Header

UZH-Logo

Maintenance Infos

Epigenetic silencing of monoallelically methylated miRNA loci in precancerous colorectal lesions


Menigatti, M; Staiano, T; Manser, C N; Bauerfeind, P; Komljenovic, A; Robinson, Mark D; Jiricny, J; Buffoli, F; Marra, Giancarlo (2013). Epigenetic silencing of monoallelically methylated miRNA loci in precancerous colorectal lesions. Oncogenesis, 2:e56.

Abstract

Epigenetic silencing of protein-encoding genes is common in early-stage colorectal tumorigenesis. Less is known about the methylation-mediated silencing of genes encoding microRNAs (miRNAs), which are also important epigenetic modulators of gene expression. Using quantitative PCR, we identified 56 miRNAs that were expressed in normal colorectal mucosa and in HT29 colorectal cancer cells treated with demethylating agents but not in untreated HT29 cells, suggesting that they probably undergo methylation-induced silencing during colorectal tumorigenesis. One of these, miR-195, had recently been reported to be underexpressed in colorectal cancers and to exert tumor-suppressor effects in colorectal cancer cells. We identified the transcription start site (TSS) for primary miRNA (pri-miR)-497/195, the primary precursor that yields miR-195 and another candidate on our list, miR-497, and a single CpG island upstream to the TSS, which controls expression of both miRNAs. Combined bisulfite restriction analysis and bisulfite genomic sequencing studies revealed monoallelic methylation of this island in normal colorectal mucosa (50/50 samples) and full methylation in most colorectal adenomas (38/50; 76%). The hypermethylated precancerous lesions displayed significantly downregulated expression of both miRNAs. Similar methylation patterns were observed at two known imprinted genes, MEG3 and GNAS-AS1, which encode several of the 56 miRNAs on our list. Imprinting at these loci was lost in over half the adenomas (62% at MEG3 and 52% at GNAS-AS1). Copy-number alterations at MEG3, GNAS-AS1 and pri-miR-497/195, which are frequent in colorectal cancers, were less common in adenomas and confined to tumors displaying differential methylation at the involved locus. Our data show that somatically acquired, epigenetic changes at monoallelically methylated regions encoding miRNAs are relatively frequent in sporadic colorectal adenomas and might contribute to the onset and progression of these tumors.

Abstract

Epigenetic silencing of protein-encoding genes is common in early-stage colorectal tumorigenesis. Less is known about the methylation-mediated silencing of genes encoding microRNAs (miRNAs), which are also important epigenetic modulators of gene expression. Using quantitative PCR, we identified 56 miRNAs that were expressed in normal colorectal mucosa and in HT29 colorectal cancer cells treated with demethylating agents but not in untreated HT29 cells, suggesting that they probably undergo methylation-induced silencing during colorectal tumorigenesis. One of these, miR-195, had recently been reported to be underexpressed in colorectal cancers and to exert tumor-suppressor effects in colorectal cancer cells. We identified the transcription start site (TSS) for primary miRNA (pri-miR)-497/195, the primary precursor that yields miR-195 and another candidate on our list, miR-497, and a single CpG island upstream to the TSS, which controls expression of both miRNAs. Combined bisulfite restriction analysis and bisulfite genomic sequencing studies revealed monoallelic methylation of this island in normal colorectal mucosa (50/50 samples) and full methylation in most colorectal adenomas (38/50; 76%). The hypermethylated precancerous lesions displayed significantly downregulated expression of both miRNAs. Similar methylation patterns were observed at two known imprinted genes, MEG3 and GNAS-AS1, which encode several of the 56 miRNAs on our list. Imprinting at these loci was lost in over half the adenomas (62% at MEG3 and 52% at GNAS-AS1). Copy-number alterations at MEG3, GNAS-AS1 and pri-miR-497/195, which are frequent in colorectal cancers, were less common in adenomas and confined to tumors displaying differential methylation at the involved locus. Our data show that somatically acquired, epigenetic changes at monoallelically methylated regions encoding miRNAs are relatively frequent in sporadic colorectal adenomas and might contribute to the onset and progression of these tumors.

Statistics

Citations

Dimensions.ai Metrics
38 citations in Web of Science®
37 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

25 downloads since deposited on 03 Sep 2013
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research

07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > Molecular Biology
Life Sciences > Cancer Research
Language:English
Date:2013
Deposited On:03 Sep 2013 11:29
Last Modified:10 Nov 2023 02:39
Publisher:Nature Publishing Group
ISSN:2157-9024
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/oncsis.2013.21
PubMed ID:23857251
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)