Header

UZH-Logo

Maintenance Infos

Changes in plasma lipids with psychosocial stress are related to hypertension status and the norepinephrine stress response


Wirtz, P H; Ehlert, Ulrike; Bärtschi, C; Redwine, L S; von Känel, R (2009). Changes in plasma lipids with psychosocial stress are related to hypertension status and the norepinephrine stress response. Metabolism: Clinical and Experimental, 58(1):30-37.

Abstract

Hypertension is a known risk factor for cardiovascular disease. Hypertensive individuals show exaggerated norepinephrine (NE) reactivity to stress. Norepinephrine is a known lipolytic factor. It is unclear if, in hypertensive individuals, stress-induced increases in NE are linked with the elevations in stress-induced circulating lipid levels. Such a mechanism could have implications for atherosclerotic plaque formation. In a cross-sectional, quasi-experimentally controlled study, 22 hypertensive and 23 normotensive men (mean +/- SEM, 45 +/- 3 years) underwent an acute standardized psychosocial stress task combining public speaking and mental arithmetic in front of an audience. We measured plasma NE and the plasma lipid profile (total cholesterol [TC], low-density-lipoprotein cholesterol [LDL-C], high-density-lipoprotein cholesterol, and triglycerides) immediately before and after stress and at 20 and 60 minutes of recovery. All lipid levels were corrected for stress hemoconcentration. Compared with normotensives, hypertensives had greater TC (P = .030) and LDL-C (P = .037) stress responses. Independent of each other, mean arterial pressure (MAP) upon screening and immediate increase in NE predicted immediate stress change in TC (MAP: beta = .41, P = .003; NE: beta = .35, P = .010) and LDL-C (MAP: beta = .32, P = .024; NE: beta = .38, P = .008). Mean arterial pressure alone predicted triglycerides stress change (beta = .32, P = .043) independent of NE stress change, age, and BMI. The MAP-by-NE interaction independently predicted immediate stress change of high-density-lipoprotein cholesterol (beta = -.58, P < .001) and of LDL-C (beta = -.25, P < .08). We conclude that MAP and NE stress reactivity may elicit proatherogenic changes of plasma lipids in response to acute psychosocial stress, providing one mechanism by which stress might increase cardiovascular risk in hypertension.

Abstract

Hypertension is a known risk factor for cardiovascular disease. Hypertensive individuals show exaggerated norepinephrine (NE) reactivity to stress. Norepinephrine is a known lipolytic factor. It is unclear if, in hypertensive individuals, stress-induced increases in NE are linked with the elevations in stress-induced circulating lipid levels. Such a mechanism could have implications for atherosclerotic plaque formation. In a cross-sectional, quasi-experimentally controlled study, 22 hypertensive and 23 normotensive men (mean +/- SEM, 45 +/- 3 years) underwent an acute standardized psychosocial stress task combining public speaking and mental arithmetic in front of an audience. We measured plasma NE and the plasma lipid profile (total cholesterol [TC], low-density-lipoprotein cholesterol [LDL-C], high-density-lipoprotein cholesterol, and triglycerides) immediately before and after stress and at 20 and 60 minutes of recovery. All lipid levels were corrected for stress hemoconcentration. Compared with normotensives, hypertensives had greater TC (P = .030) and LDL-C (P = .037) stress responses. Independent of each other, mean arterial pressure (MAP) upon screening and immediate increase in NE predicted immediate stress change in TC (MAP: beta = .41, P = .003; NE: beta = .35, P = .010) and LDL-C (MAP: beta = .32, P = .024; NE: beta = .38, P = .008). Mean arterial pressure alone predicted triglycerides stress change (beta = .32, P = .043) independent of NE stress change, age, and BMI. The MAP-by-NE interaction independently predicted immediate stress change of high-density-lipoprotein cholesterol (beta = -.58, P < .001) and of LDL-C (beta = -.25, P < .08). We conclude that MAP and NE stress reactivity may elicit proatherogenic changes of plasma lipids in response to acute psychosocial stress, providing one mechanism by which stress might increase cardiovascular risk in hypertension.

Statistics

Citations

Dimensions.ai Metrics
23 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

131 downloads since deposited on 15 Mar 2009
24 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Scopus Subject Areas:Health Sciences > Endocrinology, Diabetes and Metabolism
Life Sciences > Endocrinology
Language:English
Date:2009
Deposited On:15 Mar 2009 09:15
Last Modified:24 Jun 2022 22:27
Publisher:Elsevier
ISSN:0026-0495
Funders:Research Grant University of Zurich 2003 (to PHW)
OA Status:Green
Publisher DOI:https://doi.org/10.1016/j.metabol.2008.08.003
PubMed ID:19059528