Navigation auf zora.uzh.ch

Search

ZORA (Zurich Open Repository and Archive)

Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: A histological and micro computed tomography study in the rabbit

de Wild, Michael; Schumacher, Ralf; Mayer, Kyrill; Schkommodau, Erik; Thoma, Daniel; Bredell, Marius; Kruse Gujer, Astrid; Grätz, Klaus W; Weber, Franz E (2013). Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: A histological and micro computed tomography study in the rabbit. Tissue Engineering. Part A, 19(23-24):2645-2654.

Abstract

The treatment of large bone defects still poses a major challenge in orthopaedic and cranio-maxillofacial surgery. One possible solution could be the development of personalized porous titanium-based implants that are designed to meet all mechanical needs with a minimum amount of titanium and maximum osteopromotive properties so that it could be combined with growth factor-loaded hydrogels or cell constructs to realize advanced bone tissue engineering strategies. Such implants could prove useful for mandibular reconstruction, spinal fusion, the treatment of extended long bone defects, or to fill in gaps created on autograft harvesting. The aim of this study was to determine the mechanical properties and potential of bone formation of light weight implants generated by selective laser melting (SLM). We mainly focused on osteoconduction, as this is a key feature in bone healing and could serve as a back-up for osteoinduction and cell transplantation strategies. To that end, defined implants were produced by SLM, and their surfaces were left untreated, sandblasted, or sandblasted/acid etched. In vivo bone formation with the different implants was tested throughout calvarial defects in rabbits and compared with untreated defects. Analysis by micro computed tomography (μCT) and histomorphometry revealed that all generatively produced porous Ti structures were well osseointegrated into the surrounding bone. The histomorphometric analysis revealed that bone formation was significantly increased in all implant-treated groups compared with untreated defects and significantly increased in sand blasted implants compared with untreated ones. Bone bridging was significantly increased in sand blasted acid-etched scaffolds. Therefore, scaffolds manufactured by SLM should be surface treated. Bone augmentation beyond the original bone margins was only seen in implant-treated defects, indicating an osteoconductive potential of the implants that could be utilized clinically for bone augmentation purposes. Therefore, designed porous, lightweight structures have potential for bone regeneration and augmentation purposes, especially when complex and patient-specific geometries are essential.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
04 Faculty of Medicine > Center for Dental Medicine > Clinic of Reconstructive Dentistry
04 Faculty of Medicine > Center for Dental Medicine > Clinic of Cranio-Maxillofacial Surgery
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Physical Sciences > Bioengineering
Life Sciences > Biochemistry
Physical Sciences > Biomaterials
Physical Sciences > Biomedical Engineering
Language:English
Date:2013
Deposited On:21 Oct 2013 07:11
Last Modified:10 Aug 2024 01:39
Publisher:Mary Ann Liebert
ISSN:1937-3341
OA Status:Green
Publisher DOI:https://doi.org/10.1089/ten.TEA.2012.0753
PubMed ID:23895118
Download PDF  'Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: A histological and micro computed tomography study in the rabbit'.
Preview
  • Content: Published Version
Download PDF  'Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: A histological and micro computed tomography study in the rabbit'.
Preview
  • Content: Accepted Version

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
130 citations in Web of Science®
155 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1089 downloads since deposited on 21 Oct 2013
88 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications