Header

UZH-Logo

Maintenance Infos

Quantification of pleural effusion from single area measurements on CT


Veljkovic, Branislav; Franckenberg, Sabine; Hatch, Gary M; Bucher, Matthias; Schwendener, Nicole; Ampanozi, Garyfalia; Thali, Michael J; Ruder, Thomas D (2013). Quantification of pleural effusion from single area measurements on CT. Emergency Radiology, 20(4):285-289.

Abstract

The objective of this study was to determine if area measurements of pleural fluid on computed tomography (CT) reflect the actual pleural fluid volume (PEvol) as measured at autopsy, to establish a formula to estimate the volume of pleural effusion (PEest), and to test the accuracy and observer reliability of PEest.132 human cadavers, with pleural effusion were divided into phase 1 (n = 32) and phase 2 (n = 100). In phase 1, PEvol was compared to area measurements on axial (axA), sagittal (sagA), and coronal (corA) CT images. Linear regression analysis was used to create a formula to calculate PEest. In phase 2, intra-class correlation (ICC) was used to assess inter-reader reliability and determine the agreement between PEest and PEvol. PEvol correlated to a higher degree to axA (r s mean = 0.738; p < 0.001) than to sagA (r s mean = 0.679, p < 0.001) and corA (r s mean = 0.709; p < 0.001). PEest can be established with the following formula: axA × 0.1 = PEest. Mean difference between PEest and PEvol was less than 40 mL (ICC = 0.837-0.874; p < 0.001). Inter-reader reliability was higher between two experienced readers (ICC = 0.984-0.987; p < 0.001) than between an inexperienced reader and both experienced readers (ICC = 0.660-0.698; p < 0.001). Pleural effusions may be quantified in a rapid, reliable, and reasonably accurate fashion using single area measurements on CT.

Abstract

The objective of this study was to determine if area measurements of pleural fluid on computed tomography (CT) reflect the actual pleural fluid volume (PEvol) as measured at autopsy, to establish a formula to estimate the volume of pleural effusion (PEest), and to test the accuracy and observer reliability of PEest.132 human cadavers, with pleural effusion were divided into phase 1 (n = 32) and phase 2 (n = 100). In phase 1, PEvol was compared to area measurements on axial (axA), sagittal (sagA), and coronal (corA) CT images. Linear regression analysis was used to create a formula to calculate PEest. In phase 2, intra-class correlation (ICC) was used to assess inter-reader reliability and determine the agreement between PEest and PEvol. PEvol correlated to a higher degree to axA (r s mean = 0.738; p < 0.001) than to sagA (r s mean = 0.679, p < 0.001) and corA (r s mean = 0.709; p < 0.001). PEest can be established with the following formula: axA × 0.1 = PEest. Mean difference between PEest and PEvol was less than 40 mL (ICC = 0.837-0.874; p < 0.001). Inter-reader reliability was higher between two experienced readers (ICC = 0.984-0.987; p < 0.001) than between an inexperienced reader and both experienced readers (ICC = 0.660-0.698; p < 0.001). Pleural effusions may be quantified in a rapid, reliable, and reasonably accurate fashion using single area measurements on CT.

Statistics

Citations

Dimensions.ai Metrics

4 citations in Scopus®
4 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 24 Oct 2013
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Legal Medicine
Dewey Decimal Classification:340 Law
610 Medicine & health
Language:English
Date:2013
Deposited On:24 Oct 2013 07:18
Last Modified:20 Sep 2018 13:31
Publisher:Springer
ISSN:1070-3004
OA Status:Green
Publisher DOI:https://doi.org/10.1007/s10140-013-1115-y
PubMed ID:23504333

Download

Download PDF  'Quantification of pleural effusion from single area measurements on CT'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 189kB
View at publisher