Header

UZH-Logo

Maintenance Infos

A direct interaction between proliferating cell nuclear antigen (PCNA) and Cdk2 targets PCNA-interacting proteins for phosphorylation.


Koundrioukoff, S; Jónsson, Z O; Hasan, S; de Jong, R N; van der Vliet, P C; Hottiger, M O; Hübscher, U (2000). A direct interaction between proliferating cell nuclear antigen (PCNA) and Cdk2 targets PCNA-interacting proteins for phosphorylation. Journal of Biological Chemistry, 275(30):22882-22887.

Abstract

Proliferating cell nuclear antigen is best known as a DNA polymerase accessory protein but has more recently also been shown to have different functions in important cellular processes such as DNA replication, DNA repair, and cell cycle control. PCNA has been found in quaternary complexes with the cyclin kinase inhibitor p21 and several pairs of cyclin-dependent protein kinases and their regulatory partner, the cyclins. Here we show a direct interaction between PCNA and Cdk2. This interaction involves the regions of the PCNA trimer close to the C termini. We found that PCNA and Cdk2 form a complex together with cyclin A. This ternary PCNA-Cdk2-cyclin A complex was able to phosphorylate the PCNA binding region of the large subunit of replication factor C as well as DNA ligase I. Furthermore, PCNA appears to be a connector between Cdk2 and DNA ligase I and to stimulate phosphorylation of DNA ligase I. Based on our results, we propose the model that PCNA brings Cdk2 to proteins involved in DNA replication and possibly might act as an "adaptor" for Cdk2-cyclin A to PCNA-binding DNA replication proteins.

Abstract

Proliferating cell nuclear antigen is best known as a DNA polymerase accessory protein but has more recently also been shown to have different functions in important cellular processes such as DNA replication, DNA repair, and cell cycle control. PCNA has been found in quaternary complexes with the cyclin kinase inhibitor p21 and several pairs of cyclin-dependent protein kinases and their regulatory partner, the cyclins. Here we show a direct interaction between PCNA and Cdk2. This interaction involves the regions of the PCNA trimer close to the C termini. We found that PCNA and Cdk2 form a complex together with cyclin A. This ternary PCNA-Cdk2-cyclin A complex was able to phosphorylate the PCNA binding region of the large subunit of replication factor C as well as DNA ligase I. Furthermore, PCNA appears to be a connector between Cdk2 and DNA ligase I and to stimulate phosphorylation of DNA ligase I. Based on our results, we propose the model that PCNA brings Cdk2 to proteins involved in DNA replication and possibly might act as an "adaptor" for Cdk2-cyclin A to PCNA-binding DNA replication proteins.

Statistics

Citations

Dimensions.ai Metrics
101 citations in Web of Science®
102 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

107 downloads since deposited on 11 Feb 2008
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:05 Vetsuisse Faculty > Department of Molecular Mechanisms of Disease
07 Faculty of Science > Department of Molecular Mechanisms of Disease
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > Biochemistry
Life Sciences > Molecular Biology
Life Sciences > Cell Biology
Language:English
Date:28 July 2000
Deposited On:11 Feb 2008 12:18
Last Modified:24 Jun 2022 08:09
Publisher:American Society for Biochemistry and Molecular Biology
ISSN:0021-9258
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1074/jbc.M001850200
PubMed ID:10930425