Header

UZH-Logo

Maintenance Infos

Promyelocytic leukemia zinc finger protein localizes to the cochlear outer hair cells and interacts with prestin, the outer hair cell motor protein.


Nagy, I; Bodmer, M; Schmid, S; Bodmer, D (2005). Promyelocytic leukemia zinc finger protein localizes to the cochlear outer hair cells and interacts with prestin, the outer hair cell motor protein. Hearing Research, 204(1-2):216-222.

Abstract

Hair cells in the auditory sensory organ are specialized mechanoreceptors common to mammalian and non-mammalian species. The mammalian cochlear outer hair cells (OHC) possess a distinct motile property, dubbed membrane-based electromotility, that enhances the receptor function. This electromotility is believed to be the basis of cochlear amplification that increases sensitivity of the mammalian ear to sound. Prestin, a unique voltage-sensitive motor molecule localized in the lateral membrane of OHC, is presumably responsible for OHC electromotility. It has been documented that prestin null-animals lack electromotility and suffer from approximately 50 dB loss of hearing sensitivity. To identify proteins that interact with prestin we carried out a yeast two-hybrid library screen using the C-terminal intracellular domain of prestin as bait. Seven bait-dependent prey clones were identified independently. Further analysis revealed that they encode partially over-lapping regions of a single protein: a transcriptional repressor, promyleocytic leukemia zinc finger protein (PLZF). PLZF encodes a POZ/domain Kruppel-type zinc finger transcription factor reported to have pro-apoptotic and anti-proliferative activity. The interaction between endogenous prestin and PLZF proteins in the cochlea was confirmed by co-immunoprecipitation using organ of Corti lysates. Furthermore, immunohistochemical studies strongly suggest that PLZF co-localizes with prestin near the lateral membrane of cochlear OHC. The physiological significance of this interaction remains to be explored.

Abstract

Hair cells in the auditory sensory organ are specialized mechanoreceptors common to mammalian and non-mammalian species. The mammalian cochlear outer hair cells (OHC) possess a distinct motile property, dubbed membrane-based electromotility, that enhances the receptor function. This electromotility is believed to be the basis of cochlear amplification that increases sensitivity of the mammalian ear to sound. Prestin, a unique voltage-sensitive motor molecule localized in the lateral membrane of OHC, is presumably responsible for OHC electromotility. It has been documented that prestin null-animals lack electromotility and suffer from approximately 50 dB loss of hearing sensitivity. To identify proteins that interact with prestin we carried out a yeast two-hybrid library screen using the C-terminal intracellular domain of prestin as bait. Seven bait-dependent prey clones were identified independently. Further analysis revealed that they encode partially over-lapping regions of a single protein: a transcriptional repressor, promyleocytic leukemia zinc finger protein (PLZF). PLZF encodes a POZ/domain Kruppel-type zinc finger transcription factor reported to have pro-apoptotic and anti-proliferative activity. The interaction between endogenous prestin and PLZF proteins in the cochlea was confirmed by co-immunoprecipitation using organ of Corti lysates. Furthermore, immunohistochemical studies strongly suggest that PLZF co-localizes with prestin near the lateral membrane of cochlear OHC. The physiological significance of this interaction remains to be explored.

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 30 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Otorhinolaryngology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Sensory Systems
Language:English
Date:2005
Deposited On:30 Mar 2009 07:43
Last Modified:23 Jan 2022 12:47
Publisher:Elsevier
ISSN:0378-5955
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.heares.2005.02.007
PubMed ID:15925207