Header

UZH-Logo

Maintenance Infos

Vascular plants as surrogates of butterfly and grasshopper diversity on two Swiss subalpine summer pastures


Koch, Bärbel; Edwards, Peter J; Blanckenhorn, Wolf U; Buholzer, Serge; Walter, Thomas; Wüest, Rafael O; Hofer, Gabriela (2013). Vascular plants as surrogates of butterfly and grasshopper diversity on two Swiss subalpine summer pastures. Biodiversity and Conservation, 22:1451-1465.

Abstract

Summer pastures in the Swiss Alps are currently affected by land-use changes that cause a decrease in biodiversity. Although these habitats make up one-third of the whole Swiss agricultural area, direct payments dedicated to support their management are very low. Current political instruments do not support efforts to conserve the biodiversity in these areas, but a vegetation-based approach such as the one implemented in the permanently utilized agricultural areas is under discussion. However, available studies evaluating the surrogate value of vascular plants for other (particularly animal) taxa have yielded inconsistent results, and very few have been conducted in habitats at high elevations. We investigated the extent to which vascular plants are adequate surrogates for butterfly and grasshopper diversity, examining the congruence of species richness and community similarity in two heterogeneous subalpine pastures in the Swiss Alps. Results at the species richness level (Spearman’s rank correlation) varied widely according to the study site and taxa assessed. In contrast, at the community similarity level (Procrustean randomization tests with Bray–Curtis similarity), congruencies between vascular plant and invertebrate taxa were generally highly significant. We therefore recommend the use of community similarity as a basis for estimating biodiversity patterns. Our results suggest that conservation measures aimed primarily at enhancing the floristic diversity of subalpine grasslands are also likely to benefit butterfly and grasshopper diversity, at least at the local scale.

Abstract

Summer pastures in the Swiss Alps are currently affected by land-use changes that cause a decrease in biodiversity. Although these habitats make up one-third of the whole Swiss agricultural area, direct payments dedicated to support their management are very low. Current political instruments do not support efforts to conserve the biodiversity in these areas, but a vegetation-based approach such as the one implemented in the permanently utilized agricultural areas is under discussion. However, available studies evaluating the surrogate value of vascular plants for other (particularly animal) taxa have yielded inconsistent results, and very few have been conducted in habitats at high elevations. We investigated the extent to which vascular plants are adequate surrogates for butterfly and grasshopper diversity, examining the congruence of species richness and community similarity in two heterogeneous subalpine pastures in the Swiss Alps. Results at the species richness level (Spearman’s rank correlation) varied widely according to the study site and taxa assessed. In contrast, at the community similarity level (Procrustean randomization tests with Bray–Curtis similarity), congruencies between vascular plant and invertebrate taxa were generally highly significant. We therefore recommend the use of community similarity as a basis for estimating biodiversity patterns. Our results suggest that conservation measures aimed primarily at enhancing the floristic diversity of subalpine grasslands are also likely to benefit butterfly and grasshopper diversity, at least at the local scale.

Statistics

Citations

Dimensions.ai Metrics
15 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 11 Dec 2013
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Physical Sciences > Ecology
Physical Sciences > Nature and Landscape Conservation
Language:English
Date:2013
Deposited On:11 Dec 2013 12:54
Last Modified:24 Jan 2022 02:15
Publisher:Springer
ISSN:0960-3115
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s10531-013-0485-5