Header

UZH-Logo

Maintenance Infos

Characteristics of extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae isolated from rivers and lakes in Switzerland


Zurfluh, K; Hächler, Herbert; Nüesch-Inderbinen, Magdalena; Stephan, Roger (2013). Characteristics of extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae isolated from rivers and lakes in Switzerland. Applied and Environmental Microbiology, 79(9):3021-3026.

Abstract

One of the currently most relevant resistance mechanisms in Enterobacteriaceae is the production of enzymes that lead to modern expanded-spectrum cephalosporin and even carbapenem resistance, mainly extended-spectrum β-lactamases (ESBLs) and carbapenemases. A worrisome aspect is the spread of ESBL and carbapenemase producers into the environment. The aim of the present study was to assess the occurrence of ESBL- and carbapenemase-producing Enterobacteriaceae and to further characterize ESBL- and carbapenemase-producing Enterobacteriaceae in rivers and lakes in Switzerland. ESBL-producing Enterobacteriaceae were detected in 21 (36.2%) of the 58 bodies of water sampled. One river sample tested positive for a carbapenemase-producing Klebsiella pneumoniae subsp. pneumoniae strain. Seventy-four individual strains expressing an ESBL phenotype were isolated. Species identification revealed 60 Escherichia coli strains, seven Klebsiella pneumoniae subsp. pneumoniae strains, five Raoultella planticola strains, one Enterobacter cloacae strain, and one Enterobacter amnigenus strain. Three strains were identified as SHV-12 ESBL producers, and 71 strains carried genes encoding CTX-M ESBLs. Of the 71 strains with CTX-M ESBL genes, 8 isolates expressed CTX-M-1, three produced CTX-M-3, 46 produced CTX-M-15, three produced CTX-M-55, one produced CTX-M-79, six produced CTX-M-14, and four produced CTX-M-27. Three of the four CTX-M-27 producers belonged to the multiresistant pandemic sequence type E. coli B2:ST131 that is strongly associated with potentially severe infections in humans and animals.

Abstract

One of the currently most relevant resistance mechanisms in Enterobacteriaceae is the production of enzymes that lead to modern expanded-spectrum cephalosporin and even carbapenem resistance, mainly extended-spectrum β-lactamases (ESBLs) and carbapenemases. A worrisome aspect is the spread of ESBL and carbapenemase producers into the environment. The aim of the present study was to assess the occurrence of ESBL- and carbapenemase-producing Enterobacteriaceae and to further characterize ESBL- and carbapenemase-producing Enterobacteriaceae in rivers and lakes in Switzerland. ESBL-producing Enterobacteriaceae were detected in 21 (36.2%) of the 58 bodies of water sampled. One river sample tested positive for a carbapenemase-producing Klebsiella pneumoniae subsp. pneumoniae strain. Seventy-four individual strains expressing an ESBL phenotype were isolated. Species identification revealed 60 Escherichia coli strains, seven Klebsiella pneumoniae subsp. pneumoniae strains, five Raoultella planticola strains, one Enterobacter cloacae strain, and one Enterobacter amnigenus strain. Three strains were identified as SHV-12 ESBL producers, and 71 strains carried genes encoding CTX-M ESBLs. Of the 71 strains with CTX-M ESBL genes, 8 isolates expressed CTX-M-1, three produced CTX-M-3, 46 produced CTX-M-15, three produced CTX-M-55, one produced CTX-M-79, six produced CTX-M-14, and four produced CTX-M-27. Three of the four CTX-M-27 producers belonged to the multiresistant pandemic sequence type E. coli B2:ST131 that is strongly associated with potentially severe infections in humans and animals.

Statistics

Citations

Dimensions.ai Metrics
195 citations in Web of Science®
207 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

121 downloads since deposited on 30 Dec 2013
11 downloads since 12 months
Detailed statistics

Additional indexing

Other titles:Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae Isolates from rivers and lakes in Switzerland
Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Food Safety and Hygiene
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Biotechnology
Life Sciences > Food Science
Life Sciences > Applied Microbiology and Biotechnology
Physical Sciences > Ecology
Language:English
Date:2013
Deposited On:30 Dec 2013 11:00
Last Modified:24 Jan 2022 02:33
Publisher:American Society for Microbiology
ISSN:0099-2240
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1128/AEM.00054-13
PubMed ID:23455339
  • Content: Published Version
  • Language: English