Header

UZH-Logo

Maintenance Infos

Leukemia inhibitory factor extends the lifespan of injured photoreceptors in vivo


Joly, S; Lange, C; Thiersch, M; Samardzija, M; Grimm, C (2008). Leukemia inhibitory factor extends the lifespan of injured photoreceptors in vivo. Journal of Neuroscience, 28(51):13765-13774.

Abstract

Survival and death of photoreceptors in degenerative diseases of the retina is controlled by a multitude of genes and endogenous factors. Some genes may be involved in the degenerative process itself whereas others may be part of an endogenous defense system. We show in two models of retinal degeneration that photoreceptor death strongly induces expression of leukemia inhibitory factor (LIF) in a subset of Muller glia cells in the inner nuclear layer of the retina. LIF expression is essential to induce an extensive intraretinal signaling system which includes Muller cells and photoreceptors and is characterized by an upregulation of Edn2, STAT3, FGF2 and GFAP. In the absence of LIF, Muller cells remain quiescent, the signaling system is not activated and retinal degeneration is strongly accelerated. Intravitreal application of recombinant LIF induces the full molecular pathway including the activation of Muller cells in wild-type and Lif(-/-) mice. Interruption of the signaling cascade by an Edn2 receptor antagonist increases whereas activation of the receptor decreases photoreceptor cell death. Thus, LIF is essential and sufficient to activate an extensive molecular defense response to photoreceptor injury. Our data establish LIF as a Muller cell derived neuronal survival factor which controls an intrinsic protective mechanism that includes Edn2 signaling to support photoreceptor cell survival and to preserve vision in the injured retina.

Abstract

Survival and death of photoreceptors in degenerative diseases of the retina is controlled by a multitude of genes and endogenous factors. Some genes may be involved in the degenerative process itself whereas others may be part of an endogenous defense system. We show in two models of retinal degeneration that photoreceptor death strongly induces expression of leukemia inhibitory factor (LIF) in a subset of Muller glia cells in the inner nuclear layer of the retina. LIF expression is essential to induce an extensive intraretinal signaling system which includes Muller cells and photoreceptors and is characterized by an upregulation of Edn2, STAT3, FGF2 and GFAP. In the absence of LIF, Muller cells remain quiescent, the signaling system is not activated and retinal degeneration is strongly accelerated. Intravitreal application of recombinant LIF induces the full molecular pathway including the activation of Muller cells in wild-type and Lif(-/-) mice. Interruption of the signaling cascade by an Edn2 receptor antagonist increases whereas activation of the receptor decreases photoreceptor cell death. Thus, LIF is essential and sufficient to activate an extensive molecular defense response to photoreceptor injury. Our data establish LIF as a Muller cell derived neuronal survival factor which controls an intrinsic protective mechanism that includes Edn2 signaling to support photoreceptor cell survival and to preserve vision in the injured retina.

Statistics

Citations

Dimensions.ai Metrics
111 citations in Web of Science®
110 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

102 downloads since deposited on 18 Dec 2008
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Ophthalmology Clinic
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > General Neuroscience
Language:English
Date:2008
Deposited On:18 Dec 2008 15:35
Last Modified:25 Jun 2022 07:46
Publisher:Society for Neuroscience
ISSN:0270-6474
Additional Information:Holder of copyright: The Society for Neuroscience
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1523/JNEUROSCI.5114-08.2008
PubMed ID:19091967