Header

UZH-Logo

Maintenance Infos

Crystal structures of B-DNA dodecamer containing the epigenetic modifications 5-hydroxymethylcytosine or 5-methylcytosine


Renciuk, Daniel; Blacque, Olivier; Vorlickova, Michaela; Spingler, Bernhard (2013). Crystal structures of B-DNA dodecamer containing the epigenetic modifications 5-hydroxymethylcytosine or 5-methylcytosine. Nucleic Acids Research, 41(21):9891-9900.

Abstract

5-Hydroxymethylcytosine (5-hmC) was recently identified as a relatively frequent base in eukaryotic genomes. Its physiological function is still unclear, but it is supposed to serve as an intermediate in DNA de novo demethylation. Using X-ray diffraction, we solved five structures of four variants of the d(CGCGAATTCGCG) dodecamer, containing either 5-hmC or 5-methylcytosine (5-mC) at position 3 or at position 9. The observed resolutions were between 1.42 and 1.99 A. Cytosine modification in all cases influences neither the whole B-DNA double helix structure nor the modified base pair geometry. The additional hydroxyl group of 5-hmC with rotational freedom along the C5-C5A bond is preferentially oriented in the 3' direction. A comparison of thermodynamic properties of the dodecamers shows no effect of 5-mC modification and a sequence-dependent only slight destabilizing effect of 5-hmC modification. Also taking into account the results of a previous functional study Munzel et al. (2011) (Improved synthesis and mutagenicity of oligonucleotides containing 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. Chem. Eur. J., 17, 13782-13788)], we conclude that the 5 position of cytosine is an ideal place to encode epigenetic information. Like this, neither the helical structure nor the thermodynamics are changed, and polymerases cannot distinguish 5-hmC and 5-mC from unmodified cytosine, all these effects are making the former ones non-mutagenic.

Abstract

5-Hydroxymethylcytosine (5-hmC) was recently identified as a relatively frequent base in eukaryotic genomes. Its physiological function is still unclear, but it is supposed to serve as an intermediate in DNA de novo demethylation. Using X-ray diffraction, we solved five structures of four variants of the d(CGCGAATTCGCG) dodecamer, containing either 5-hmC or 5-methylcytosine (5-mC) at position 3 or at position 9. The observed resolutions were between 1.42 and 1.99 A. Cytosine modification in all cases influences neither the whole B-DNA double helix structure nor the modified base pair geometry. The additional hydroxyl group of 5-hmC with rotational freedom along the C5-C5A bond is preferentially oriented in the 3' direction. A comparison of thermodynamic properties of the dodecamers shows no effect of 5-mC modification and a sequence-dependent only slight destabilizing effect of 5-hmC modification. Also taking into account the results of a previous functional study Munzel et al. (2011) (Improved synthesis and mutagenicity of oligonucleotides containing 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. Chem. Eur. J., 17, 13782-13788)], we conclude that the 5 position of cytosine is an ideal place to encode epigenetic information. Like this, neither the helical structure nor the thermodynamics are changed, and polymerases cannot distinguish 5-hmC and 5-mC from unmodified cytosine, all these effects are making the former ones non-mutagenic.

Statistics

Citations

Dimensions.ai Metrics
58 citations in Web of Science®
61 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

101 downloads since deposited on 13 Jan 2014
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Life Sciences > Genetics
Language:English
Date:2013
Deposited On:13 Jan 2014 15:15
Last Modified:19 Aug 2022 10:00
Publisher:Oxford University Press
ISSN:0305-1048
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/nar/gkt738
PubMed ID:23963698
  • Content: Published Version