Header

UZH-Logo

Maintenance Infos

Synthetic pre-microRNAs reveal dual-strand activity of miR-34a on TNF-α


Guennewig, Boris; Roos, Martina; Dogar, Afzal M; Gebert, Luca F R; Zagalak, Julian A; Vongrad, Valentina; Metzner, Karin J; Hall, Jonathan (2014). Synthetic pre-microRNAs reveal dual-strand activity of miR-34a on TNF-α. RNA, 20(1):61-75.

Abstract

Functional microRNAs (miRNAs) are produced from both arms of their precursors (pre-miRNAs). Their abundances vary in context-dependent fashion spatiotemporarily and there is mounting evidence of regulatory interplay between them. Here, we introduce chemically synthesized pre-miRNAs (syn-pre-miRNAs) as a general class of accessible, easily transfectable mimics of pre-miRNAs. These are RNA hairpins, identical in sequence to natural pre-miRNAs. They differ from commercially available miRNA mimics through their complete hairpin structure, including any regulatory elements in their terminal-loop regions and their potential to introduce both strands into RISC. They are distinguished from transcribed pre-miRNAs by their terminal 5' hydroxyl groups and their precisely defined terminal nucleotides. We demonstrate with several examples how they fully recapitulate the properties of pre-miRNAs, including their processing by Dicer into functionally active 5p; and 3p-derived mature miRNAs. We use syn-pre-miRNAs to show that miR-34a uses its 5p and 3p miRNAs in two pathways: apoptosis during TGF-β signaling, where SIRT1 and SP4 are suppressed by miR-34a-5p and miR-34a-3p, respectively; and the lipopolysaccharide (LPS)-activation of primary human monocyte-derived macrophages, where TNF (TNFα) is suppressed by miR-34a-5p indirectly and miR-34a-3p directly. Our results add to growing evidence that the use of both arms of a miRNA may be a widely used mechanism. We further suggest that syn-pre-miRNAs are ideal and affordable tools to investigate these mechanisms.

Abstract

Functional microRNAs (miRNAs) are produced from both arms of their precursors (pre-miRNAs). Their abundances vary in context-dependent fashion spatiotemporarily and there is mounting evidence of regulatory interplay between them. Here, we introduce chemically synthesized pre-miRNAs (syn-pre-miRNAs) as a general class of accessible, easily transfectable mimics of pre-miRNAs. These are RNA hairpins, identical in sequence to natural pre-miRNAs. They differ from commercially available miRNA mimics through their complete hairpin structure, including any regulatory elements in their terminal-loop regions and their potential to introduce both strands into RISC. They are distinguished from transcribed pre-miRNAs by their terminal 5' hydroxyl groups and their precisely defined terminal nucleotides. We demonstrate with several examples how they fully recapitulate the properties of pre-miRNAs, including their processing by Dicer into functionally active 5p; and 3p-derived mature miRNAs. We use syn-pre-miRNAs to show that miR-34a uses its 5p and 3p miRNAs in two pathways: apoptosis during TGF-β signaling, where SIRT1 and SP4 are suppressed by miR-34a-5p and miR-34a-3p, respectively; and the lipopolysaccharide (LPS)-activation of primary human monocyte-derived macrophages, where TNF (TNFα) is suppressed by miR-34a-5p indirectly and miR-34a-3p directly. Our results add to growing evidence that the use of both arms of a miRNA may be a widely used mechanism. We further suggest that syn-pre-miRNAs are ideal and affordable tools to investigate these mechanisms.

Statistics

Citations

Dimensions.ai Metrics
45 citations in Web of Science®
43 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Infectious Diseases
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Molecular Biology
Language:English
Date:2014
Deposited On:14 Jan 2014 09:49
Last Modified:24 Jan 2022 02:42
Publisher:RNA Society / Cold Spring Harbor Laboratory Press
ISSN:1355-8382
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1261/rna.038968.113
PubMed ID:24249224
Full text not available from this repository.