Header

UZH-Logo

Maintenance Infos

Fluorescent probes for G-quadruplex structures


Vummidi, B R; Alzeer, J; Luedtke, N W (2013). Fluorescent probes for G-quadruplex structures. Chembiochem, 14(5):540-558.

Abstract

Mounting evidence supports the presence of biologically relevant G-quadruplexes in single-cell organisms, but the existence of endogenous G-quadruplex structures in mammalian cells remains highly controversial. This is due, in part, to the common misconception that DNA and RNA molecules are passive information carriers with relatively little structural or functional complexity. For those working in the field, however, the lack of available tools for characterizing DNA structures in vivo remains a major limitation to addressing fundamental questions about structure-function relationships of nucleic acids. In this review, we present progress towards the direct detection of G-quadruplex structures by using small molecules and modified oligonucleotides as fluorescent probes. While most development has focused on cell-permeable probes that selectively bind to G-quadruplex structures with high affinity, these same probes can induce G-quadruplex folding, thereby making the native conformation of the DNA or RNA molecule (i.e., in the absence of probe) uncertain. For this reason, modified oligonucleotides and fluorescent base analogues that serve as "internal" fluorescent probes are presented as an orthogonal means for detecting conformational changes, without necessarily perturbing the equilibria between G-quadruplex, single-stranded, and duplex DNA. The major challenges and motivation for the development of fluorescent probes for G-quadruplex structures are presented, along with a summary of the key photophysical, biophysical, and biological properties of reported examples.

Abstract

Mounting evidence supports the presence of biologically relevant G-quadruplexes in single-cell organisms, but the existence of endogenous G-quadruplex structures in mammalian cells remains highly controversial. This is due, in part, to the common misconception that DNA and RNA molecules are passive information carriers with relatively little structural or functional complexity. For those working in the field, however, the lack of available tools for characterizing DNA structures in vivo remains a major limitation to addressing fundamental questions about structure-function relationships of nucleic acids. In this review, we present progress towards the direct detection of G-quadruplex structures by using small molecules and modified oligonucleotides as fluorescent probes. While most development has focused on cell-permeable probes that selectively bind to G-quadruplex structures with high affinity, these same probes can induce G-quadruplex folding, thereby making the native conformation of the DNA or RNA molecule (i.e., in the absence of probe) uncertain. For this reason, modified oligonucleotides and fluorescent base analogues that serve as "internal" fluorescent probes are presented as an orthogonal means for detecting conformational changes, without necessarily perturbing the equilibria between G-quadruplex, single-stranded, and duplex DNA. The major challenges and motivation for the development of fluorescent probes for G-quadruplex structures are presented, along with a summary of the key photophysical, biophysical, and biological properties of reported examples.

Statistics

Citations

Dimensions.ai Metrics
120 citations in Web of Science®
125 citations in Scopus®
136 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 15 Jan 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Uncontrolled Keywords:Organic Chemistry, Molecular Medicine, Biochemistry, Molecular Biology
Language:English
Date:2013
Deposited On:15 Jan 2014 12:11
Last Modified:18 Aug 2018 13:15
Publisher:Wiley-VCH Verlag Berlin
ISSN:1439-4227
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/cbic.201200612

Download