Header

UZH-Logo

Maintenance Infos

Carbon losses from pyrolysed and original wood in a forest soil under natural and increased N deposition


Maestrini, Bernardo; Abiven, Samuel; Singh, Nimisha; Bird, Jeffrey; Torn, Margaret S; Schmidt, Michael W I (2014). Carbon losses from pyrolysed and original wood in a forest soil under natural and increased N deposition. Biogeosciences, 11(18):5199-5213.

Abstract

Pyrogenic organic matter (PyOM) plays an important role as a stable carbon (C) sink in the soils of terrestrial ecosystems. However, uncertainties remain about in situ turnover rates of fire-derived PyOM in soil, the main processes leading to PyOM-C and nitrogen (N) losses from the soil, and the role of N availability on PyOM cycling in soils. We measured PyOM and native soil organic carbon losses from the soil as carbon dioxide and dissolved organic carbon (DOC) using additions of highly 13C-labelled PyOM (2.03 atom %) and its precursor pinewood during 1 year in a temperate forest soil. The field experiment was carried out under ambient and increased mineral N deposition (+60 kg N-NH4NO3 ha−1 year−1). The results showed that after 1 year: (1) 0.5% of PyOM-C and 22% of wood-C were mineralized as CO2, leading to an estimated turnover time of 191 and 4 years, respectively; (2) the quantity of PyOM and wood lost as dissolved organic carbon was negligible (0.0004 ± 0.0003% and 0.022 ± 0.007% of applied-C, respectively); and (3) N additions decreased cumulative PyOM mineralization by 43%, but did not affect cumulative wood mineralization and did not affect the loss of DOC from PyOM or wood. We conclude that mineralization to CO2 was the main process leading to PyOM losses during the first year of mineralization in a forest soil, and that N addition can decrease PyOM-C cycling, while added N showed no effect on wood C cycling.

Abstract

Pyrogenic organic matter (PyOM) plays an important role as a stable carbon (C) sink in the soils of terrestrial ecosystems. However, uncertainties remain about in situ turnover rates of fire-derived PyOM in soil, the main processes leading to PyOM-C and nitrogen (N) losses from the soil, and the role of N availability on PyOM cycling in soils. We measured PyOM and native soil organic carbon losses from the soil as carbon dioxide and dissolved organic carbon (DOC) using additions of highly 13C-labelled PyOM (2.03 atom %) and its precursor pinewood during 1 year in a temperate forest soil. The field experiment was carried out under ambient and increased mineral N deposition (+60 kg N-NH4NO3 ha−1 year−1). The results showed that after 1 year: (1) 0.5% of PyOM-C and 22% of wood-C were mineralized as CO2, leading to an estimated turnover time of 191 and 4 years, respectively; (2) the quantity of PyOM and wood lost as dissolved organic carbon was negligible (0.0004 ± 0.0003% and 0.022 ± 0.007% of applied-C, respectively); and (3) N additions decreased cumulative PyOM mineralization by 43%, but did not affect cumulative wood mineralization and did not affect the loss of DOC from PyOM or wood. We conclude that mineralization to CO2 was the main process leading to PyOM losses during the first year of mineralization in a forest soil, and that N addition can decrease PyOM-C cycling, while added N showed no effect on wood C cycling.

Statistics

Citations

Dimensions.ai Metrics
33 citations in Web of Science®
38 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

97 downloads since deposited on 24 Feb 2014
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
08 Research Priority Programs > Global Change and Biodiversity
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Physical Sciences > Earth-Surface Processes
Uncontrolled Keywords:Earth-Surface Processes, Ecology, Evolution, Behavior and Systematics
Language:English
Date:2014
Deposited On:24 Feb 2014 09:48
Last Modified:11 Nov 2023 02:38
Publisher:Copernicus Publications
ISSN:1726-4170
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.5194/bg-11-5199-2014
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)