Header

UZH-Logo

Maintenance Infos

Varying photoperiod in the laboratory rat: profound effect on 24-h sleep pattern but no effect on sleep homeostasis.


Franken, P; Tobler, I; Borbély, A A (1995). Varying photoperiod in the laboratory rat: profound effect on 24-h sleep pattern but no effect on sleep homeostasis. American Journal of Physiology: Renal Physiology, 269(3 Pt 2):R691-R701.

Abstract

To assess the influence of the photoperiod on sleep regulation, laboratory rats were adapted to a long photoperiod (LPP; 16:8-h light-dark cycle, LD 16:8) or a short photoperiod (SPP; LD 8:16). The electroencephalogram (EEG) and cortical temperature (TCRT) were continuously recorded for a baseline day, a 24-h sleep deprivation (SD) period, and a recovery day. Data obtained previously for LD 12:12 served for comparison. Whereas the photoperiod exerted a prominent effect on the 24-h sleep pattern, the 24-h baseline level of sleep and the response to SD were little affected. Recovery from SD was characterized by a marked rise in rapid eye movement sleep, a moderate rise in non-rapid eye movement sleep, and an initial enhancement of EEG slow-wave activity followed by a decrease below baseline. The amplitude and phase of the "unmasked" 24-h component of TCRT did not differ between LPP and SPP. Computer simulations demonstrated that the changes of TCRT and EEG slow-wave activity can be largely accounted for by the sequence of the vigilance states. We conclude that the photoperiod does not affect the basic processes underlying sleep regulation.

Abstract

To assess the influence of the photoperiod on sleep regulation, laboratory rats were adapted to a long photoperiod (LPP; 16:8-h light-dark cycle, LD 16:8) or a short photoperiod (SPP; LD 8:16). The electroencephalogram (EEG) and cortical temperature (TCRT) were continuously recorded for a baseline day, a 24-h sleep deprivation (SD) period, and a recovery day. Data obtained previously for LD 12:12 served for comparison. Whereas the photoperiod exerted a prominent effect on the 24-h sleep pattern, the 24-h baseline level of sleep and the response to SD were little affected. Recovery from SD was characterized by a marked rise in rapid eye movement sleep, a moderate rise in non-rapid eye movement sleep, and an initial enhancement of EEG slow-wave activity followed by a decrease below baseline. The amplitude and phase of the "unmasked" 24-h component of TCRT did not differ between LPP and SPP. Computer simulations demonstrated that the changes of TCRT and EEG slow-wave activity can be largely accounted for by the sequence of the vigilance states. We conclude that the photoperiod does not affect the basic processes underlying sleep regulation.

Statistics

Citations

Dimensions.ai Metrics
38 citations in Web of Science®
46 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Physiology
Health Sciences > Physiology (medical)
Language:English
Date:1 September 1995
Deposited On:11 Feb 2008 12:19
Last Modified:23 Jan 2022 08:39
Publisher:American Physiological Society
ISSN:0002-9513
OA Status:Closed
Publisher DOI:https://doi.org/10.1152/ajpregu.1995.269.3.R691
Related URLs:http://ajpregu.physiology.org/cgi/content/abstract/269/3/R691
PubMed ID:7573572
Full text not available from this repository.