Header

UZH-Logo

Maintenance Infos

Phylogeography of Primula allionii (Primulaceae), a narrow endemic of the Maritime Alps


Casazza, Gabriele; Grassi, Fabrizio; Zecca, Giovanni; Mariotti, Mauro Giorgio; Guerrina, Maria; Minuto, Luigi (2013). Phylogeography of Primula allionii (Primulaceae), a narrow endemic of the Maritime Alps. Botanical Journal of the Linnean Society, 173(4):637-653.

Abstract

Primula allionii is endemic to a tiny area of the Maritime Alps and has one of the narrowest distribution ranges in this hotspot of biodiversity. Phylogeographical patterns in P. allionii were studied using plastid DNA markers and dominantly inherited markers (AFLP and ISSR) to verify any admixture between P. allionii and the sympatric P. marginata and to detect the phylogeographical history of the species. Morphometric measurements of flowers and admixture analysis support the hypothesis that hybridization occurs in nature. Species distribution models using two climate models (CCSM and MIROC) suggested a reduction in habitat suitability during cold periods. Phylogeographical analysis suggested an old allopatric divergence during the mid-Pleistocene transition (about 0.8 Mya) without recolonization/contraction cycles. The Alps watershed does not act as a strong barrier between the two main areas of the distribution range, and moderate gene flow by pollen seems to create the admixture recorded among the stands. According to our results, the persistence of P. allionii throughout the Ice Age appears to be linked to the capacity of the Maritime Alps to provide a wide diversity of microhabitats consistent with the recent biogeographical pattern proposed for the Mediterranean Basin.

Abstract

Primula allionii is endemic to a tiny area of the Maritime Alps and has one of the narrowest distribution ranges in this hotspot of biodiversity. Phylogeographical patterns in P. allionii were studied using plastid DNA markers and dominantly inherited markers (AFLP and ISSR) to verify any admixture between P. allionii and the sympatric P. marginata and to detect the phylogeographical history of the species. Morphometric measurements of flowers and admixture analysis support the hypothesis that hybridization occurs in nature. Species distribution models using two climate models (CCSM and MIROC) suggested a reduction in habitat suitability during cold periods. Phylogeographical analysis suggested an old allopatric divergence during the mid-Pleistocene transition (about 0.8 Mya) without recolonization/contraction cycles. The Alps watershed does not act as a strong barrier between the two main areas of the distribution range, and moderate gene flow by pollen seems to create the admixture recorded among the stands. According to our results, the persistence of P. allionii throughout the Ice Age appears to be linked to the capacity of the Maritime Alps to provide a wide diversity of microhabitats consistent with the recent biogeographical pattern proposed for the Mediterranean Basin.

Statistics

Citations

Dimensions.ai Metrics
12 citations in Web of Science®
10 citations in Scopus®
11 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 24 Jan 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Systematic and Evolutionary Botany
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2013
Deposited On:24 Jan 2014 08:10
Last Modified:02 Mar 2018 23:11
Publisher:Wiley-Blackwell
ISSN:0024-4074
OA Status:Closed
Publisher DOI:https://doi.org/10.1111/boj.12110

Download