Header

UZH-Logo

Maintenance Infos

Analysis of blood and lymph vascularization patterns in tissue-engineered human dermo-epidermal skin analogs of different pigmentation


Klar, Agnieszka S; Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Schiestl, Clemens; Reichmann, Ernst; Meuli, Martin (2014). Analysis of blood and lymph vascularization patterns in tissue-engineered human dermo-epidermal skin analogs of different pigmentation. Pediatric Surgery International, 30(2):223-231.

Abstract

PURPOSE: Bioengineered dermo-epidermal skin analogs containing melanocytes represent a promising approach to cover large skin defects including restoration of the patient's own skin color. So far, little is known about the development of blood and lymphatic vessels in pigmented skin analogs after transplantation. In this experimental study, we analyzed the advancement and differences of host blood and lymphatic vessel ingrowth into light- and dark-pigmented human tissue-engineered skin analogs in a rat model.

METHODS: Keratinocytes, melanocytes, and fibroblasts from light- and dark-pigmented skin biopsies were isolated, cultured, and expanded. For each donor, melanocytes and keratinocytes were seeded in ratios of 1:1, 1:5, and 1:10 onto fibroblast-containing collagen gels. The skin analogs were subsequently transplanted onto full-thickness wounds of immuno-incompetent rats and quantitatively analyzed for vascular and lymphatic vessel density after 8 and 15 weeks.

RESULTS: The skin analogs revealed a significant difference in vascularization patterns between light- and dark-pigmented constructs after 8 weeks, with a higher amount of blood vessels in light compared to dark skin. In contrast, no obvious difference could be detected within the light- and dark-pigmented group when varying melanocyte/keratinocyte ratios were used. However, after 15 weeks, the aforementioned difference in blood vessel density between light and dark constructs could no longer be detected. Regarding lymphatic vessels, light and dark analogs showed similar vessel density after 8 and 15 weeks, while there were generally less lymphatic than blood vessels.

CONCLUSION: These data suggest that, at least during early skin maturation, keratinocytes, melanocytes, and fibroblasts from different skin color types used to construct pigmented dermo-epidermal skin analogs have distinct influences on the host tissue after transplantation. We speculate that different VEGF expression patterns might be involved in this disparate revascularization pattern observed.

Abstract

PURPOSE: Bioengineered dermo-epidermal skin analogs containing melanocytes represent a promising approach to cover large skin defects including restoration of the patient's own skin color. So far, little is known about the development of blood and lymphatic vessels in pigmented skin analogs after transplantation. In this experimental study, we analyzed the advancement and differences of host blood and lymphatic vessel ingrowth into light- and dark-pigmented human tissue-engineered skin analogs in a rat model.

METHODS: Keratinocytes, melanocytes, and fibroblasts from light- and dark-pigmented skin biopsies were isolated, cultured, and expanded. For each donor, melanocytes and keratinocytes were seeded in ratios of 1:1, 1:5, and 1:10 onto fibroblast-containing collagen gels. The skin analogs were subsequently transplanted onto full-thickness wounds of immuno-incompetent rats and quantitatively analyzed for vascular and lymphatic vessel density after 8 and 15 weeks.

RESULTS: The skin analogs revealed a significant difference in vascularization patterns between light- and dark-pigmented constructs after 8 weeks, with a higher amount of blood vessels in light compared to dark skin. In contrast, no obvious difference could be detected within the light- and dark-pigmented group when varying melanocyte/keratinocyte ratios were used. However, after 15 weeks, the aforementioned difference in blood vessel density between light and dark constructs could no longer be detected. Regarding lymphatic vessels, light and dark analogs showed similar vessel density after 8 and 15 weeks, while there were generally less lymphatic than blood vessels.

CONCLUSION: These data suggest that, at least during early skin maturation, keratinocytes, melanocytes, and fibroblasts from different skin color types used to construct pigmented dermo-epidermal skin analogs have distinct influences on the host tissue after transplantation. We speculate that different VEGF expression patterns might be involved in this disparate revascularization pattern observed.

Statistics

Citations

Dimensions.ai Metrics
17 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

59 downloads since deposited on 07 Mar 2014
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Clinic for Surgery
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Pediatrics, Perinatology and Child Health
Health Sciences > Surgery
Language:English
Date:2014
Deposited On:07 Mar 2014 16:38
Last Modified:24 Jan 2022 03:06
Publisher:Springer
ISSN:0179-0358
OA Status:Green
Publisher DOI:https://doi.org/10.1007/s00383-013-3451-0
PubMed ID:24363089
Project Information:
  • : FunderFP7
  • : Grant ID279024
  • : Project TitleEUROSKINGRAFT - A novel generation of skin substitutes to clinically treat a broad spectrum of severe skin defects
  • : FunderFP7
  • : Grant ID238551
  • : Project TitleMULTITERM - Training Multidisciplinary scientists for Tissue Engineering and Regenerative Medicine