Header

UZH-Logo

Maintenance Infos

Characterization of Streptococcus gordonii prophage PH15: complete genome sequence and functional analysis of phage-encoded integrase and endolysin


van der Ploeg, J R (2008). Characterization of Streptococcus gordonii prophage PH15: complete genome sequence and functional analysis of phage-encoded integrase and endolysin. Microbiology, 154(Pt 10):2970-2978.

Abstract

Streptococcus gordonii OMZ1039, isolated from supragingival dental plaque, was found to harbour a prophage, PH15, whose excision could be induced by mitomycin treatment. Phage PH15 belongs to the Siphoviridae. The complete genome sequence of PH15 was determined. The genome was 39 136 bp in size and contained 61 ORFs. The genome of PH15 was most similar in the structural module to the temperate bacteriophages MM1 and phiNIH1.1 from Streptococcus pneumoniae and Streptococcus pyogenes, respectively. In strain OMZ1039, PH15 was found to reside as a prophage in the cysteinyl-tRNA gene. A plasmid, harbouring the attP site and the integrase gene downstream of a constitutive promoter, was capable of site-specific integration into the genomes of different oral streptococcal species. The phage endolysin was purified after expression in Escherichia coli and found to inhibit growth of all S. gordonii strains tested and several different streptococcal species, including the pathogens Streptococcus mutans, S. pyogenes and Streptococcus agalactiae.

Abstract

Streptococcus gordonii OMZ1039, isolated from supragingival dental plaque, was found to harbour a prophage, PH15, whose excision could be induced by mitomycin treatment. Phage PH15 belongs to the Siphoviridae. The complete genome sequence of PH15 was determined. The genome was 39 136 bp in size and contained 61 ORFs. The genome of PH15 was most similar in the structural module to the temperate bacteriophages MM1 and phiNIH1.1 from Streptococcus pneumoniae and Streptococcus pyogenes, respectively. In strain OMZ1039, PH15 was found to reside as a prophage in the cysteinyl-tRNA gene. A plasmid, harbouring the attP site and the integrase gene downstream of a constitutive promoter, was capable of site-specific integration into the genomes of different oral streptococcal species. The phage endolysin was purified after expression in Escherichia coli and found to inhibit growth of all S. gordonii strains tested and several different streptococcal species, including the pathogens Streptococcus mutans, S. pyogenes and Streptococcus agalactiae.

Statistics

Citations

Dimensions.ai Metrics
13 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

149 downloads since deposited on 30 Dec 2008
17 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Institute of Oral Biology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Microbiology
Language:English
Date:2008
Deposited On:30 Dec 2008 08:12
Last Modified:25 Jun 2022 07:56
Publisher:Society for General Microbiology
ISSN:1350-0872
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1099/mic.0.2008/018739-0
PubMed ID:18832303