Header

UZH-Logo

Maintenance Infos

Immobilizing individual atoms beneath a corrugated single layer of boron nitride


Cun, Huanyao; Iannuzzi, Marcella; Hemmi, Adrian; Roth, Silvan; Osterwalder, Jürg; Greber, Thomas (2013). Immobilizing individual atoms beneath a corrugated single layer of boron nitride. Nano letters, 13(5):2098-2103.

Abstract

Single atoms, and in particular the least reactive noble gases, are difficult to immobilize at room temperature. Ion implantation into a crystal lattice has this capability, but the randomness of the involved processes does not permit much control over their distribution within the solid. Here we demonstrate that the boron nitride nanomesh, a corrugated single layer of hexagonal boron nitride (h-BN) with a 3.2 nm honeycomb superstructure formed on a Rh(111) surface, can trap individual argon atoms at distinct subsurface sites at room temperature. A kinetic energy window for implantation is identified where the argon ions can penetrate the h-BN layer but not enter the Rh lattice. Scanning tunneling microscopy and photoemission data show the presence of argon atoms at two distinct sites within the nanomesh unit cell, confirmed also by density functional theory calculations. The single atom implants are stable in air. Annealing of implanted structures to 900 K induces the formation of highly regular holes of 2 nm diameter in the h-BN layer with adjacent flakes of the same size found on top of the layer. We explain this "can-opener" effect by the presence of a vacancy defect, generated during the penetration of the Ar ion through the h-BN lattice, and propagating along the rim of a nanomesh pore where the h-BN lattice is highly bent. The reported effects are also observed in graphene on ruthenium and for neon atoms.

Abstract

Single atoms, and in particular the least reactive noble gases, are difficult to immobilize at room temperature. Ion implantation into a crystal lattice has this capability, but the randomness of the involved processes does not permit much control over their distribution within the solid. Here we demonstrate that the boron nitride nanomesh, a corrugated single layer of hexagonal boron nitride (h-BN) with a 3.2 nm honeycomb superstructure formed on a Rh(111) surface, can trap individual argon atoms at distinct subsurface sites at room temperature. A kinetic energy window for implantation is identified where the argon ions can penetrate the h-BN layer but not enter the Rh lattice. Scanning tunneling microscopy and photoemission data show the presence of argon atoms at two distinct sites within the nanomesh unit cell, confirmed also by density functional theory calculations. The single atom implants are stable in air. Annealing of implanted structures to 900 K induces the formation of highly regular holes of 2 nm diameter in the h-BN layer with adjacent flakes of the same size found on top of the layer. We explain this "can-opener" effect by the presence of a vacancy defect, generated during the penetration of the Ar ion through the h-BN lattice, and propagating along the rim of a nanomesh pore where the h-BN lattice is highly bent. The reported effects are also observed in graphene on ruthenium and for neon atoms.

Statistics

Citations

Dimensions.ai Metrics
55 citations in Web of Science®
56 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 05 Feb 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Bioengineering
Physical Sciences > General Chemistry
Physical Sciences > General Materials Science
Physical Sciences > Condensed Matter Physics
Physical Sciences > Mechanical Engineering
Language:English
Date:2013
Deposited On:05 Feb 2014 15:36
Last Modified:24 Jan 2022 03:12
Publisher:American Chemical Society
ISSN:1530-6984
OA Status:Closed
Publisher DOI:https://doi.org/10.1021/nl400449y
PubMed ID:23551295