Abstract
To investigate the effect on the sleep EEG, a 1-mg oral dose of SR 46349B, a novel 5-HT2 antagonist, was administered three hours before bedtime. The drug enhanced slow wave sleep (SWS) and reduced stage 2 without affecting subjective sleep quality. In nonREM sleep (NREMS) EEG slow-wave activity (SWA; power within 0.75-4.5 Hz) was increased and spindle frequency activity (SFA; power within 12.25-15 Hz) was decreased. The relative NREMS power spectrum showed a bimodal pattern with the main peak at 1.5 Hz and a secondary peak at 6 Hz. A regional analysis based on bipolar derivations along the antero-posterior axis revealed significant 'treatment' x 'derivation' interactions within the 9-16 Hz range. In enhancing SWA and attenuating SFA, the 5-HT2 receptor antagonist mimicked the effect of sleep deprivation, whereas the pattern of the NREMS spectrum differed.