
Zurich Open Repository and
Archive
University of Zurich
Main Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2013

Certificate-based pairwise key establishment protocol for wireless sensor
networks

Porambage, Pawani ; Kumar, Pardeep ; Schmitt, Corinna ; Gurtov, Andrei ; Ylianttila, Mika

Abstract: In order to guarantee the privacy and safety of data transactions in Wireless Sensor Networks
(WSNs), secure key transportation and unique node identification have become major concerns. WSNs
are deployed in a wide range of applications with a high demand for secure communications. When
designing a secure key management protocol for WSNs, special attention should be given to the resource
constraints of the devices and the scalability of the network. In this paper, we exploit public-key nature
protocols to define a hybrid key establishment algorithm for symmetric key cryptography. We propose
an Elliptic Curve Cryptography based implicit certificate scheme and show how to utilize the certificates
for deriving pair-wise link keys in a WSN. By a performance and security analysis, we justify that the
proposed scheme is well fitting with the functional and architectural features of WSNs. Both experimental
results and theoretical analysis show that the proposed key establishment protocol is viable to deploy in
a real-time WSN application.

DOI: https://doi.org/10.1109/CSE.2013.103

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-91651
Conference or Workshop Item
Accepted Version

Originally published at:
Porambage, Pawani; Kumar, Pardeep; Schmitt, Corinna; Gurtov, Andrei; Ylianttila, Mika (2013).
Certificate-based pairwise key establishment protocol for wireless sensor networks. In: 10th IEEE In-
ternational Conference on Embedded Software and Systems, Sydney, Australia, 3 December 2013 - 5
December 2013, 1-8.
DOI: https://doi.org/10.1109/CSE.2013.103

Certificate-Based Pairwise Key Establishment

Protocol for Wireless Sensor Networks

Pawani Porambage∗, Pardeep Kumar∗, Corinna Schmitt†, Andrei Gurtov‡ and Mika Ylianttila∗

∗Centre for Wireless Communications, University of Oulu, P.o.Box 4500, FI-90014 Oulu, Finland

{pporamba, pkumar, mika.ylianttila}@ee.oulu.fi
†Institute of Informatics, University of Zurich, Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland

schmitt@ifi.uzh.ch
‡Department of Computer Science and Engineering, Aalto University, FI-00076 Aalto, Finland

gurtov@cs.helsinki.fi

Abstract—In order to guarantee the privacy and safety of data
transactions in Wireless Sensor Networks (WSNs), secure key
transportation and unique node identification have become major
concerns. WSNs are deployed in a wide range of applications
with a high demand for secure communications. When designing
a secure key management protocol for WSNs, special attention
should be given to the resource constraints of the devices and the
scalability of the network. In this paper, we exploit public-key
nature protocols to define a hybrid key establishment algorithm
for symmetric key cryptography. We propose an Elliptic Curve
Cryptography based implicit certificate scheme and show how to
utilize the certificates for deriving pair-wise link keys in a WSN. By
a performance and security analysis, we justify that the proposed
scheme is well fitting with the functional and architectural features
of WSNs. Both experimental results and theoretical analysis show
that the proposed key establishment protocol is viable to deploy
in a real-time WSN application.

Index Terms—Wireless Sensor Networks, Implicit certificate,
Security, Link key establishment, Elliptic Curve Cryptography

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are deployed in wide

ranges of applications such as environmental monitoring, health

care, industrial automation and battlefields where information

security and confidentiality are prime requirements [1]. Depend-

ing on the application scenario of the WSN, sensor nodes can

be statically located or mobile. The network is constructed with

one or few powerful base stations and thousands to millions of

sensor nodes, which are inherently resources restricted in terms

of memory, battery capacity and computational power [2]. In or-

der to defend malicious attacks and ensure hop-by-hop security,

symmetric key encryption is used for secure communication

between WSN nodes as motivated in references [3] and [4].

However, it is impractical to incorporate conventional network

layer key management protocols in their original formats since

they are too expensive for low-power low-performing sensor

nodes [3]. Therefore, it is quite challenging to implement

an appropriate key management algorithm, which should be

compatible with the resource scarcity of sensor nodes and other

WSN characteristics.

In this paper, we propose an Elliptic Curve Cryptogra-

phy (ECC)-based public key cryptography (PKC) solution for

secure key management in WSNs. Our main contribution is

the design of an implicit certificate-based key establishment

protocol for low performing WSNs and the justification of its

appropriateness in terms of performance and security strength.

We present the real-time implementation results on a simple

TelosB senor network in terms of memory and execution time.

Moreover, we explain how the new nodes can join the net-

work and change the locations dynamically, obtain certificates,

and establish the pairwise keys with the neighboring nodes.

The resource consumption and overhead of the protocol are

analyzed, in such a way to support the WSN characteristics.

The protocol consists of two phases: Authenticated certificate

generation for legitimate nodes (Phase I) and secure link key

establishment (Phase II). In Phase I, sensor nodes are granted

implicit certificates by the resource rich cluster head, which

is considered as the Certificate Authority (CA). The sensor

nodes send certificate requests to the CA for new certificates or

renovating expired certificates. On receiving the certificates, the

nodes can calculate their own public and private keys. In Phase

II, nodes exploit the obtained certificates to establish pair-wise

ephemeral keys (i.e., the link keys) with their neighbor nodes.

Since we use ECC to design the protocol, it brings an equal

security level as RSA, which is a conventional and standardized

PKC scheme. However, ECC induces less processing overhead,

resource, and time consumptions than RSA [5].

The rest of the paper is organized as follows. Section II

presents the related work which motivated our proposed proto-

col. Section III provides the assumptions, the system model, and

the list of notations that we consider relevant. Section IV de-

scribes the theoretical design of our proposed certificate-based

key establishment protocol. Two phases, certificate generation

and link key establishment, are discussed in subsections IV-A

and IV-B respectively. Section V gives a performance and

security analysis for the proposed protocol. Finally, Section VI

concludes the paper and gives future directions for further

enhancements of the proposed scheme.

II. RELATED WORK

This section introduces related work that inspired the pro-

posed system model and our developed protocol solution.

WSNs should be designed to maximize the network lifetime,

sensing coverage, network connectivity, data delivery ratio and

optimum energy consumption [6]. Network structure is mod-

eled according to the sensing model, transmission range, time

synchronization, failure model, and location information [7].

In reference [1] Zhou et. al have presented the main security

considerations in WSNs as key management, authentication,

integrity, availability, secure routing, and intrusion detection.

It was pointed out that, the new trends of keying mecha-

nisms for WSNs are the hybrid versions of symmetric and

asymmetric key techniques. Three key distribution approaches

were addressed as random, deterministic, and location-based.

Nevertheless, in all approaches, the nodes have to store the

key information of neighboring nodes. Due to the dynamic

characteristics of the network and memory restrictions in the

devices, these approaches do not fit well for a WSN with

millions of sensor nodes. As stated in reference [8] security

goals for a particular WSN are depending on its network life

time and application scenario. Generally, cryptographic keys

play the most important role in initializing any kind of security

in WSN. Secure initialization is intrinsic with many other

security protocols such as secure routing, authenticated data

processing or secure distributed data storage. Therefore, it is

significant to have well secured cryptographic keys as link keys

for communication channels in WSN. Due to the high resource

demand, PKC algorithms such as RSA are not recommended

for WSN applications. However, ECC (i.e., a light weight PKC

alternative) based security solutions are no more new to WSNs.

The utilization of implicit certificates for generating pair-wise

ephemeral keys is yet a improving realm. There are several

implicit certificate generation schemes for WSNs presented in

references [5] and [9]. Elliptic Curve Qu-Vanstone (ECQV)

is one of such schemes embedded in ZigBee Smart Energy

applications [10].

TinyECC is a stable ECC implementation for WSNs. In

reference [11] the authors provide implementation details and

measurement results of ECC security schemes in WSNs. Ba-

sically, they have produced performance results for Elliptic

Curve Digital Signaturing Algorithm (ECDSA) and Diffie-

Hellman key establishment (ECDH). Several ECC based se-

curity schemes have been proposed for WSNs as published

in references [12], [5], [13] and [14]. Specifically in ref-

erence [14] the authors suggest a hybrid key establishment

algorithm using ECDH and implicit certificates. However, they

claim the communication and computation overhead only by a

theoretical analysis. The scalability and mobility of the protocol

are low since the sensor nodes cannot renovate their certificates

after deployment. The communication overhead is also high

in their protocol due to four message transactions for the key

establishment.

III. SYSTEM MODEL, ASSUMPTIONS AND NOTATIONS

This section introduces the assumed system model, the

assumptions and the notations, which are to be used for the

key establishment protocol.

A. System Model

According to reference [2] we consider the standard WSN

architecture with cluster tree topology as shown in Figure 1.

However, based on WSN applications, different topologies

Sensor Node Base Station Cluster Head

Fig. 1. WSN topology

can be established for both heterogeneous and homogeneous

networks. Irrespective of the topology, in every type of data

collecting and monitoring WSNs, there is a cluster head (CH) or

a network coordinator node. This coordinator node is resource

richer than the ordinary senor nodes. This special node is illus-

trated as a black box in Figure 1 compared with common sensor

nodes as circles. The sensor nodes are deployed in predefined

clusters under the control of particular CH. Generally, the CH

acts as the intermediate coordinator between sensors and the

base station. Sensor nodes gather data from their corresponding

area and send data to CH or the base station via single hop or

multi-hops. There can be scenarios where both sensor nodes

and CH can be mobile. In such a scenario, the communication

links are very short-term and dynamic changing. For such

cases, ephemeral pair-wise link keys are required for secure

communication since symmetric key encryption is more cost

effective than PKC encryption. The new node addition should

be also considered for the network expansion purposes.

B. Assumptions

In our approach, we have five assumptions briefly described

in the following. First, comparing with ordinary sensor nodes,

CH is a more resource rich entity in terms of memory, battery

capacity (or main power) and transmission power. CH performs

the role of CA in the particular cluster. Second, Elliptic

Curve (EC) parameters, authentication key K, CA’s public key

(QCA) and a valid unique identity (ID) are pre-deployed in

sensor nodes at the initialization phase (in off-line mode).

Third, CA can verify the validity of sensor node identities and

recognize whether the sensor node belongs to its cluster or

not. Fourth, CH can directly send messages to sensor nodes

within its cluster. Sensor nodes can reach the corresponding

CH by single or multiple hops. Finally, physical node capturing

attacks are to be identified by beacon messages as explained

in references [9] and [4]. When one node is compromised the

CH will identify it and broadcast its ID to the cluster. The

neighboring nodes of the compromised node will demolish the

pre-established pairwise keys with the compromised node.

C. Notations

The notations used in this paper are defined in Table I.

EC parameters are denoted by q, a, b, G, n. q is a prime

which indicates finite field Fq . a and b are coefficients of

EC y2 = x3 + ax + b where 4a3 + 27b2 6= 0. G is the base

point generator with order of n, which is also a prime.

TABLE I
NOTATIONS USED IN CRYPTOGRAPHIC ALGORITHMS

Notation Description

K Network-wide symmetric key for initial authentication
rU Secret random integer value generated by U

RU EC point for certificate request sent by node U

CertU Implicit certificate of ith node
e An integer value used to keep hash value of CertU
s An integer value used to compute private key of the

requestor node
dU Node U’s private key
QU Node U’s public key
NU A random cryptographic nonce generated by node U

KUV Link key between nodes U and V

IV. OUR SOLUTION

We present the key establishment protocol based on the

assumptions and the system model described in Section III.

The protocol is mainly divided into two phases: (1) Implicit

Certificate Generation and (2) Pairwise Link Key Establish-

ment. Every sensor node has to undergo the first phase at

bootstrapping phase and certificate revocation instances. The

second phase should be executed whenever two neighboring

sensor nodes want to establish a pairwise key.

A. Implicit Certificate Generation (Phase I)

Firstly, EC parameters, authentication key K, CA’s public key

(QCA) and a valid ID are pre-deployed in each sensor node at

the off-line mode. K is common to all sensor nodes and the CH

(i.e., CA) of the cluster. The flow of the certificate generation

scheme is illustrated in Figure 2, where gray boxes indicate

value ranges and required equations, and white boxes indicate

the operations performed by the entities.

The certificate generation process is inspired by the design

principles of ECQV implicit certificate scheme as explained

in [10]. When a sensor node wants to obtain a new certificate

or renovate an existing one, it broadcasts a certificate request

message. The request may reach the CA by single or multiple

hops. While creating a certificate request, first, the node gen-

erates a random number rU ∈ [1, . . . , n − 1] and computes

RU = rU × G. Secondly, the node produces a cryptographic

random nonce NU and computes MACK[RU , NU , U], where U

is the node identity. Then, the node broadcasts U, RU and NU

along with MAC. When the CA receives the message, it checks

the validity of the node identifier (U) and verifies the MAC. If

the identifier is legitimate and the verification is successful, the

CA generates a random number rCA ∈ [1, . . . , n − 1] and

computes the certificate CertU = RU + rCA × G. Then the CA

calculates s using CertU , rCA and its own private key (dCA);

e = H(CertU) and s = erCA + dCA (mod n). Value e should be

computed using a one-way cryptographic hash function such as

SHA. Later, the CA will send a random nonce NCA, Certificate

CertU and s along with the MAC on [CertU , NCA, s, U].

Since the CA has a higher transmission power, it can directly

send the message to the requestor node. When receiving this

message, the requestor node U first verifies the received MAC

and if it is correct U calculates e = H(CertU). The identical

hash function should be used as in CA. Then the node can

compute its own private key dU = erU + s (mod n) and public

key QU = dU × G. The CA (i.e., CH) only has to participate in

this phase of the protocol in two scenarios, node bootstrapping

state and certificate renovation state.

B. Pairwise Link Key Establishment (Phase II)

In this phase, two sensor nodes can use the certificates and

pre-computed keys to perform the authenticated pairwise key

establishment as shown in Figure 3. Assume that U and V

sensor nodes are in the same cluster. Node U initiates the key

establishment by choosing a random nonce NU and broadcast-

ing it along with CertU , identity U and MACK[CertU , NU , U].

Likewise in Phase I MAC is appended for the initial authen-

tication. Once the neighboring node (V) receives the message,

it verifies the MAC. If the verification succeeds, the receiver

can ensure that U is an authenticated node. Furthermore V can

have an implicit assurance that U is a legitimate node of the

given cluster by computing sender’s public key QU using QCA;

e = H(CertU) and QU = eCertU + QCA. According to the

following derivation, this calculation also gives exactly the same

QU as computed by the node U.

QU = dUG

= (erU + s(mod n)) G
= (erU + erCA + dCA(mod n)) G
= e(rU + rCA(mod n)) G+ dCAG

= e(rUG+ rCAG) +QCA

= e(RU + rCAG) +QCA

= eCertU +QCA

(1)

Then the node V generates a random nonce NV and sends it

along with CertV , identity V and MACK[CertV , NV , V]. In the

meantime V computes the pairwise key KUV from its private

key dV and U’s public key QU ; KUV = dV QU . Similar

to V, upon receiving the message, node U verifies the MAC

and if the verification is successful, then it computes QV and

KUV = dUQV . Therefore, at the end of two way message

transferring, both parties can derive a common pairwise key for

actual secure communication.

V. EVALUATION

This section provides a detailed evaluation of our proposed

protocol, which is presented in terms of a performance eval-

Requestor Node (U) Certificate Authority (CA)

rU єR [1, ..., n-1]

RU = rUG

Generate NU

Calculate MACK[RU , U , NU]

Verify MAC

Check validity of U

rCA єR [1, ..., n-1]

CertU = RU + rCAG

e = H(CertU)

s = erCA + dCA (mod n)

Generate NCA

Calculate MACK[CertU , s , NCA, U]

RU, U, NU , MAC[RU , U , NU]

CertU, s, NCA , MAC[CertU || s || NCA || U]

Verify MAC

e = H(CertU)

dU = erU + s (mod n)

QU = dUG

Fig. 2. Implicit certificate generation (Phase I)

Node U Node V

Generate NU

Calculate MACK[CertU , U , NU]

Verify MAC

Check validity of U

e = H(CertU)

QU = eCertU + QCA

Generate NV

Calculate MACK[CertV , V , NV]

CertU, U, NU , MACK[CertU , U , NU]

CertV, V, NV , MACK[CertV , V , NV]

Verify MAC

e = H(CertV)

QV = eCertV + QCA

KUV = dUQV = dVdUG

KUV = dVQU = dVdUG

Fig. 3. Pairwise link key establishment (Phase II)

uation, a network scalability analysis, and a security analysis.

The subsection V-A presents the numerical measurements we

obtained for the memory consumption and timing values of

the key establishment protocol. Subsections V-B and V-C

contribute a theoretical justification of scalability and security

strength of the protocol. Finally, a comparison with existing

ECC related approaches is given in Section V-D.

A. Performance Evaluation

Our experimental setup is implemented on TelosB mote

platform [15], which has IEEE 802.15.4 compliant CC2420 RF

transceivers. The hardware includes 8 MHz, 16-bit MCU with

10 Kbyte RAM and 48 Kbyte ROM. CC2420 RF transceiver

has a maximum data rate of 250 kbps and frequency band of

2400 MHz. The proposed scheme is developed in NesC on

TinyOS 2.1.2 [16]. ECC (i.e., for EC arithmetic operations) and

natural number (NN) (i.e., for large natural number operations)

interfaces are utilized from TinyECC configurable library [11].

secp160r1 EC domain parameters are used as defined in [17].

TinyECC provides EC optimization techniques such as Bar-

rett Reduction to speed up modulo operations, Hybrid mul-

tiplication and squaring for integer multiplication, Projective

Coordinate Systems for the point addition, Sliding Window for

scalar multiplication, and Shamir’s trick for summing two scalar

multiplications.

The experimental setup comprises three TelosB nodes, one

as the CA and the rest as the cluster nodes. For the sake of

simplicity and comparison, CA functionalities are also imple-

mented on a sensor node itself. The measurements are taken

in terms of execution time and memory (i.e., RAM and ROM)

consumption. ECC operations are extremely costly than other

cryptographic operations (i.e., MAC, SHA-1) [11]. Therefore,

we have considered three different techniques of EC operation

optimizations (i.e., provided with TinyECC) for taking time and

memory readings: Disable all the optimization techniques, en-

able all the optimization techniques, and disable Shamir’s trick.

SHA-1 is used as the one-way cryptographic hash function.

The memory consumption values are measured for requestor

operations, CA operations and pairwise key calculation with

three optimized techniques. The check size.pl script is used to

obtain RAM and ROM sizes required by each operation. The

execution times are measured directly on the sensor nodes for

the collective operations such as protocol initialization, request

generation, certificate generation, certificate verification and

pairwise key computation.

As depicted in Figures 4 and 5, when the EC optimization

techniques are disabled, the memory consumptions of ROM

and RAM sizes are very small for all three operations (i.e.,

Requestor operations, CA operations and Pairwise Key Calcu-

lation).

After enabling EC optimization techniques, massive incre-

ments can be seen for the memory utilization values of all

operations. Nevertheless, by disabling Shamir’s trick, we can

save 802 bytes of ROM size and 676 bytes of RAM size for

every operation. Key calculation consumes lower memory size

6
4

9
2 7

9
0

8

4
9

1
4

1
2

4
1

4

1
2

5
2

0

1
2

2
9

0

1
1

6
1

2

1
1

7
1

8

1
1

4
8

8

0

2000

4000

6000

8000

10000

12000

14000

Requestor operations CA operations Key calculation

R
O

M
 s

iz
e

 (
b

y
te

s)

Operation

Disable all opt. Enable all opt. Without Shamir's trick

Fig. 4. ROM size of certificate generation and key calculation

1
5

4

1
3

2

1
0

0

2
0

3
6

2
0

5
8

2
0

1
4

1
3

6
0

1
3

8
2

1
3

3
8

0

500

1000

1500

2000

2500

Requestor operations CA operations Key calculation

R
A

M
 s

iz
e

 (
b

y
te

s)

Operation

Disable all opt. Enable all opt. Without Shamir's trick

Fig. 5. RAM size of certificate generation and key calculation

than the certificate generation operation. However, for last two

optimization techniques (i.e., enabling all EC optimizations and

disabling Shamir’s trick only), for each case separately, the

ROM consumption values are showing slight variations around

a common value for all three operations. A similar behavior

can be seen for the RAM utilization.

TABLE II
EXECUTION TIME

Disable Enable Without
all opt. all opt. Shamir’s trick

Operation (ms) (ms) (ms)

Initialization 1 5227 2709
Certificate request generation 41799 2755 2764

Certificate generation 86377 5724 5728
Certificate verification 42129 2755 2758

Key computation 86891 5767 5768

Table II shows the execution time of distinctive operations

(i.e., protocol initialization, request generation, certificate gen-

eration, certificate verification and pairwise key computation)

under three aspects of EC optimization techniques. Once we

disable all the EC optimization techniques, the algorithm ini-

tialization time has become very close to zero. However, initial-

ization takes 5227 ms when all the optimizations are enabled.

Without Shamir’s trick, the initialization time is 2709 ms,

which is approximately two times faster than with all the

optimizations. Contrasting to initialization operation, all the

other operations have been speed-up 20 times faster by enabling

EC optimization techniques.

When we consider both execution time and memory alloca-

tion, it is clear that the optimizations accelerate the operations

of the protocol though they consume reasonably large mem-

ory. However, only by eliminating Shamir’s trick, we cannot

impose a significant impact on the overall performance of the

protocol. Therefore, in cooperation, the best solution for our

key establishment protocol is to enable all the other techniques

except Shamir’s trick (i.e., third technique). According to the

last optimization aspect, the sensor node takes 8231 ms for

protocol initialization, request generation and certificate ver-

ification. On CA’s side, the execution time is 8437 ms for

protocol initialization and certificate computation. Therefore

the computation time for the certificate generation phase at

both ends is 16668 ms. The key establishment phase expends

8477 ms for initialization and key calculation. From the given

observations, we can claim the feasibility of deploying the

proposed scheme is viable in wireless sensor nodes. Memory

costs for our protocol are tolerable by the extreme resource con-

strained sensor nodes such as TelosB mote platform. Moreover,

timing values can be reduced with the further improvements of

more efficient implementation of ECC basic operations.

In both, certificate generation phase and key establishment

phases, the communication cost is restricted to two way mes-

sage transfers for the purpose of minimizing the communication

overhead. Since each message contains an EC point (44 bytes),

node ID (2 bytes), random nonce (4 bytes), and MAC value

(8 bytes), the average message size is about 58 bytes. Therefore,

we have changed the default size (29 bytes) of the data of

message t header field in TinyOS 2.1.2, according to the

protocol requirement (58 bytes). Similar to memory and time

consumption optimizations, we can further reduce the message

sizes by using well designed EC curves.

B. Scalability

Our protocol supports the scalability of the network (i.e., ex-

panding the network with the new node addition) and the

location changes of the sensor nodes with in the same cluster.

When a new node is added to the network, a valid node identity,

keying information (i.e., K and QCA) and EC domain parame-

ters should be stored while the node is at the off-line mode.

Figure 6 illustrates how our protocol supports a new node

addition to the network, within a particular cluster. In Stage

1, at the bootstrapping phase, the newly added node (marked

white double circled) can send the certificate request and obtain

a certificate from the CA for computing its own keys. Therefore,

the size of the network is not necessary to be pre-defined during

the initial design phase and the deployment phase.

After receiving a new node request, the CA only needs to

verify the validity of the sensor node identities to issue the

certificate. In Stage 2, the new node receives its certificate.

Finally in Stage 3, the node can establish the pairwise link

keys with its neighbors, using that received certificate.

Similarly, the sensor nodes do not need prior knowledge

about their neighbors. Whenever a new node is added to the

network or it changes the neighboring set, it can establish the

ephemeral pairwise link keys, with the corresponding neighbors

using the certificate. The certificates always provide an implicit

assurance for the sensor nodes that they are authenticated nodes

in the given cluster. Even though the sensor nodes frequently

change their locations (i.e., also the neighboring set), they can

derive the pairwise keys securely without previous awareness

of the new neighboring nodes. According to reference [1], if the

pairwise keys between neighbors are pre-installed, then there

should be a large number of stored keys per node. This may

not be desirable for the large scale networks. However, in our

protocol such a large scale key pre-installation is not needed at

all since the ephemeral link keys have to be established before

starting communication. Furthermore, the keys are derived

based on their certificates which are exchanged during the initial

handshake.

C. Security Analysis

Our proposed certificate based key establishment protocol is

developed using one of the lightest PKC schemes ECC. Though

it is comparatively more expensive than symmetric key algo-

rithms, it is inherently secured due to the PKC characteristics.

However, we have shown in the above section, that the proposed

scheme is feasible to deploy in real-time WSNs. While using

EC scalar-point multiplication, the scheme is provably secured

under the random oracle model that the discrete logarithm prob-

lem over the subgroup is untractable. The proposed pairwise

key establishment extends the security strength of the standard

ECDH key agreement, by using mutually authenticated keying

materials (e.g., CertU and s). Since the link keys are derived

using two pre-evaluated values (e.g., dU and QV), it is implicitly

assured the legitimacy and trust between two parties. In order to

overcome illegal message alternations by malicious nodes and

denial of service attacks (DoS), every message contains MAC

with the common authentication key K for preserving data

integrity. The availability of the proposed protocol is ensured

by giving permission to two legitimate nodes, which possess

the certificates granted from the CA, to establish a secure

pairwise key for their mutual communication. The freshness

of the messages is guaranteed by appending true nonce. In

Phase I, the origin of the message (i.e., CA) cannot deny being

sent the message (i.e., non-repudiation property) since the CA

uses its key pair to generate the certificate and private key

reconstruction value (s). Likewise, during the key establishment

phase, the sender of the messages cannot deny that the messages

are sent by itself since the receiver always uses the certificate

of the sender to derive its (i.e., the sender’s) public key.

Stage 1 Stage 2 Stage 3

Sensor Nodes:

Already integrated node

Newly adding node

Cluster Head

(CH)

Certificate

Request
Certificate

 Link Key

Establishment

Fig. 6. Behavior of the protocol when a new node enters the cluster.

In the security analysis, we are considering three attacks

including, node compromising attacks, masquerade attacks

and impersonate attacks. In node compromising attacks, an

adversary can physically capture a node and obtain its keys.

Similarly in Phase II, an attacker can impersonate a legitimate

sensor node using its certificate or try to masquerade the key

establishment between two legitimate nodes.

Node compromise attacks

Our protocol is resilient to node compromise attacks. If a

node U is captured, the adversary can reveal CertU , QU , dU
and QCA. However, with CA’s public key, an adversary can

not create a new valid certificate and private key reconstruction

data, since they are derived using dCA, which is only known

to CA. Though a node pretends to be a forgery CA and issues

certificates with QCA, eventually the fake certificates and

public keys are disclosed during the key establishment phase

(i.e., calculating KUV = dUQV). We assume that the CH can

identify compromised nodes using beacon message technique,

as explained in references [9] and [4]. Then the CA will

broadcast the compromised node ID to the non-compromised

nodes. Upon receiving CA’s message (i.e., compromised

node ID), the other sensor nodes will discard the certificate

of the corresponding node and the pre-established pairwise

keys. Then the compromised node cannot appear itself as a

legitimate node in future, because its certificate and node ID

are already abandoned by the legitimate nodes.

Impersonate and Masquerade attacks

In the key establishment phase, nodes are authenticated in

order to prevent impersonation attacks and masquerade attacks.

The node V computes the node U’s public key using its CertU
and CA’s public key QCA. The pairwise key KUV calculation at

both ends will be the same, only if the certificates are issued by

the valid CA. Therefore the node V has an implicit assurance

that the received certificate is genuine (i.e., issued by the CA).

Likewise, when two legitimate nodes initiate a pairwise key, an

attacker (without a valid certificate) cannot come in between

them and masquerade the key establishment. Since the pairwise

key is derived on the basis of the certificates and private keys

of both legitimate parties, an attacker cannot proceed it by only

using a valid certificate.

D. Comparison With Related Work

The development of our proposed key establishment protocol

is inspired by the different ECC based security schemes, which

are presented in the Section II. Therefore, in this section

we compare the certificate-based pairwise key establishment

protocol with the related work.

In reference [11], timing and memory utilization values are

presented for three ECC schemes. Among them, ECDSA and

ECDH are the most related schemes to our proposed protocol.

Table III gives the comparison results between ECDSA scheme

and the proposed certificate scheme on behalf of the sensor

node and CA. All the empirical results are measured on TelosB

sensor nodes. For the sake of comparison, we have considered

the enabling of all the ECC optimization techniques except

Shamir’s trick (i.e., third technique). At both ends our scheme

is more efficient than the conventional ECDSA scheme in terms

of memory consumptions and timing values. Similarly, Table IV

shows the comparison results between ECDH scheme and

the proposed key establishment protocol. The values witness

the high performing capability of our scheme in the resource

constrained sensor nodes.

TABLE III
COMPARISON OF PROPOSED CERTIFICATE SCHEME WITH ECDSA SCHEME

Proposed solution
ECDSA Requestor CA
scheme operations operation

[11] (sensor node) (CH)

ROM (bytes) 12640 11612 11718
RAM (bytes) 1586 1360 1382

Time consumption (ms) 14789 8231 8437

In security aspects, conventional ECDH scheme is vul-

nerable to impersonate and masquerade attacks since two

communicating parties do not have an authentication phase

TABLE IV
COMPARISON OF PROPOSED KEY ESTABLISHMENT SCHEME WITH ECDH

SCHEME

ECDH Proposed
scheme key establishment scheme

[11]

ROM (bytes) 12102 11718
RAM (bytes) 1866 1382

Time consumption (ms) 6146 5768

during the key establishment. However, as explained above our

key establishment is well secured at both types of attacks.

Originally, ECDSA and ECDH schemes do not address the

possibility of network scalability. However, in the paper we

have analyzed how the proposed scheme supports the scalability

of the network. Therefore, the authors of this paper believe

that the proposed solution extends the existing pool of security

solutions are concerned with ECC and can optimize the key

establishment in WSNs.

VI. CONCLUSION

In this paper, we introduced a certificate based pairwise key

establishment protocol for WSNs. The proposed key manage-

ment scheme comprises two phases: For providing certificates

for the resource constrained sensor nodes and establishing pair-

wise link keys for mutual node communication. The security

protocol is a PKC based solution used for deriving a common

secret key for symmetric key encryption. The novelty is the

utilization of implicit certificates for generating pairwise keys.

Our experimental results show the feasibility of deploying

the proposed scheme in an actual resource constrained WSN.

However, the further optimized EC operations may incur less

resource consumptions on sensor nodes and accelerate the

protocol execution. Moreover, we have discussed and justified

the appropriateness of the protocol for the resource utilization

and scalability of WSN. Though there is a simple concept

behind the proposed scheme, the security analysis has proven

the robustness of the protocol for different security pitfalls.

In future, we intend to extend this protocol by changing

the content of the certificate in such way to provide higher

security for mobile sensor nodes in massive scale IoT networks.

We can customize the content of the implicit certificates by

adding other information such as the time stamp, location

identity or IPv6 over Low power Wireless Personal Area

Network (6LoWPAN) identity, depending upon the application

requirements. Furthermore, we intend to extend the utilization

of implicit certificates for group key management in large scale

sensor networks.

ACKNOWLEDGEMENT

This work has been supported by Tekes under Massive

Scale Machine-to-Machine Service (MAMMotH) project and

Academy of Finland project SEMOHealth.

REFERENCES

[1] Y. Zhou, Y. Fang, and Y. Zhang, “Securing Wireless Sensor Networks:
A Survey,” IEEE Communications Surveys Tutorials, vol. 10, no. 3, pp.
6–28, 2008.

[2] “IEEE Standard for Low-Rate Wireless Personal Area Networks (LR-
WPANs),” IEEE Std 802.15.4. 2011(Revision of IEEE Std 802.15.4-
2006), 2011.

[3] Y. Xiao, V. K. Rayi, B. Sun, X. Du, F. Hu, and M. Galloway, “A Survey
of Key Management Schemes in Wireless Sensor Networks,” Comput.

Commun., vol. 30, no. 11-12, pp. 2314–2341, Sep. 2007. [Online].
Available: http://dx.doi.org/10.1016/j.comcom.2007.04.009

[4] S. H. Jokhio, I. A. Jokhio, and A. H. Kemp, “Node Capture Attack
Detection and Defence in Wireless Sensor Networks,” Wireless Sensor

Systems, IET, vol. 2, no. 3, pp. 161–169, 2012.
[5] K. Malasri and L. Wang, “Design and Implementation of a SecureWireless

Mote-Based Medical Sensor Network,” Sensors, vol. 9, no. 8, pp. 6273–
6297, 2009.

[6] X. Li, Y. Mao, and Y. Liang, “A Survey on Topology Control in Wireless
Sensor Networks,” in Proceedings of the 10th International Conference

on Control, Automation, Robotics and Vision, ser. ICARCV, 2008, pp.
251–255.

[7] Z. Gengzhong and L. Qiumei, “A Survey on Topology Control in Wireless
Sensor Networks,” in Proceedings of the 2nd International Conference on

Future Networks, ser. ICFN, 2010, pp. 376–380.
[8] S. Stelle, M. Manulis, and M. Hollick, “Topology-Driven Secure Ini-

tialization in Wireless Sensor Networks: A Tool-Assisted Approach,”
in Proceedings of the 7th International Conference on Availability,

Reliability and Security, ser. ARES, 2012, pp. 28–37.
[9] R. Lu, X. Li, X. Liang, X. Shen, and X. Lin, “GRS: The Green, Relia-

bility, and Security of Emerging Machine to Machine Communications,”
IEEE Communications Magazine, vol. 49, no. 4, pp. 28–35, 2011.

[10] “SEC4: Elliptic Curve Qu-Vanstone Implicit Certificate Scheme (ECQV),
version 0.97,” www.secg.org, August 2013.

[11] A. Liu and P. Ning, “TinyECC: A Configurable Library for Elliptic
Curve Cryptography in Wireless Sensor Networks,” in Proceedings of

the 7th international Conference on Information Processing in Sensor

Networks, ser. IPSN. IEEE Computer Society, 2008, pp. 245–256.
[Online]. Available: http://dx.doi.org/10.1109/IPSN.2008.47

[12] Y. Liu, J. Li, and M. Guizani, “PKC Based Broadcast Authentication
using Signature Amortization for WSNs,” IEEE Transactions on Wireless

Communications, vol. 11, no. 6, pp. 2106–2115, 2012.
[13] X. H. Le, S. Lee, I. Butun, M. Khalid, R. Sankar, M. (Hyoung-

IL) Kim, M. Han, Y.-K. Lee, and H. Lee, “An Energy-Efficient Access
Control Scheme for Wireless Sensor Networks based on Elliptic Curve
Cryptography,” Journal of Communications and Networks, vol. 11, no. 6,
pp. 599–606, 2009.

[14] P. Kotzanikolaou and E. Magkos, “Hybrid Key Establishment for Multi-
phase Self-Organized Sensor Networks,” in Proceedings of the 6th IEEE

International Symposium on a World of Wireless Mobile and Multimedia

Networks, ser. WoWMoM. IEEE, 2005, pp. 581–587.
[15] “TelosB Datasheet,” Crossbow Inc., Tech. Rep., 2013. [Online]. Available:

http://www.datasheetarchive.com/4--Crossbow*-datasheet.html
[16] “TinyOS Documentation,” www.tinyos.net, August 2013.
[17] D. Hankerson, S. Vanstone, and A. J. Menezes, Guide to Elliptic Curve

Cryptography. Springer, 2004.

