Header

UZH-Logo

Maintenance Infos

Population viability analysis of American mink (Neovison vison) escaped from Danish mink farms


Pertoldi, C; Rødjajn, S; Zalewski, A; Demontis, D; Loeschcke, V; Kjærsgaard, A (2013). Population viability analysis of American mink (Neovison vison) escaped from Danish mink farms. Journal of Animal Science, 91(6):2530-2541.

Abstract

The American mink (Neovison vison) was introduced to Danish fur farms in the 1930s. An unknown number of mink have managed to escape these farms over the years. Today feral mink are found in the wild in most parts of Denmark. A population viability analysis (PVA) was performed using VORTEX, a stochastic population simulation software, to 1) predict the viability and potential population expansion from different sizes of founding populations of farm escapees, 2) investigate which parameters mostly affect the viability, 3) assess the effects of continuous escapes on the feral populations and how the feral populations are affected by management programs, and 4) discuss eradication strategies and their efficiency in management of the feral American mink population in Denmark. The simulations showed that juvenile mortality had the greatest effect on population viability followed by fecundity, adult mortality, and initial population size. Populations supplemented yearly by escapees all reached the carrying capacity and gained genetic variability over the years. Harvesting was modeled as the yearly number of mink caught in Denmark. Most of the simulated harvested populations crashed within few years after the first harvesting event. This indicates that the feral number of mink in Denmark is sustained due to supplements from mink farms and no true feral population exists. To manage the number of feral mink in Denmark it is essential to prevent escapees. The eradication effort would be most effective if focused on late summer and autumn when juvenile mink leave the maternal territory.

Abstract

The American mink (Neovison vison) was introduced to Danish fur farms in the 1930s. An unknown number of mink have managed to escape these farms over the years. Today feral mink are found in the wild in most parts of Denmark. A population viability analysis (PVA) was performed using VORTEX, a stochastic population simulation software, to 1) predict the viability and potential population expansion from different sizes of founding populations of farm escapees, 2) investigate which parameters mostly affect the viability, 3) assess the effects of continuous escapes on the feral populations and how the feral populations are affected by management programs, and 4) discuss eradication strategies and their efficiency in management of the feral American mink population in Denmark. The simulations showed that juvenile mortality had the greatest effect on population viability followed by fecundity, adult mortality, and initial population size. Populations supplemented yearly by escapees all reached the carrying capacity and gained genetic variability over the years. Harvesting was modeled as the yearly number of mink caught in Denmark. Most of the simulated harvested populations crashed within few years after the first harvesting event. This indicates that the feral number of mink in Denmark is sustained due to supplements from mink farms and no true feral population exists. To manage the number of feral mink in Denmark it is essential to prevent escapees. The eradication effort would be most effective if focused on late summer and autumn when juvenile mink leave the maternal territory.

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 11 Feb 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Food Science
Life Sciences > Animal Science and Zoology
Life Sciences > Genetics
Language:English
Date:2013
Deposited On:11 Feb 2014 13:44
Last Modified:24 Jan 2022 03:34
Publisher:American Society of Animal Science
ISSN:0021-8812
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.2527/jas.2012-6039
PubMed ID:23478820