Header

UZH-Logo

Maintenance Infos

Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration


Zayit-Soudry, S; Duncan, J L; Syed, R; Menghini, M; Roorda, A J (2013). Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration. Investigative Ophthalmology & Visual Science [IOVS], 54(12):7498-7509.

Abstract

PURPOSE:
To evaluate cone spacing using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with nonneovascular AMD, and to correlate progression of AOSLO-derived cone measures with standard measures of macular structure.
METHODS:
Adaptive optics scanning laser ophthalmoscopy images were obtained over 12 to 21 months from seven patients with AMD including four eyes with geographic atrophy (GA) and four eyes with drusen. Adaptive optics scanning laser ophthalmoscopy images were overlaid with color, infrared, and autofluorescence fundus photographs and spectral domain optical coherence tomography (SD-OCT) images to allow direct correlation of cone parameters with macular structure. Cone spacing was measured for each visit in selected regions including areas over drusen (n = 29), at GA margins (n = 14), and regions without drusen or GA (n = 13) and compared with normal, age-similar values.
RESULTS:
Adaptive optics scanning laser ophthalmoscopy imaging revealed continuous cone mosaics up to the GA edge and overlying drusen, although reduced cone reflectivity often resulted in hyporeflective AOSLO signals at these locations. Baseline cone spacing measures were normal in 13/13 unaffected regions, 26/28 drusen regions, and 12/14 GA margin regions. Although standard clinical measures showed progression of GA in all study eyes, cone spacing remained within normal ranges in most drusen regions and all GA margin regions.
CONCLUSIONS:
Adaptive optics scanning laser ophthalmoscopy provides adequate resolution for quantitative measurement of cone spacing at the margin of GA and over drusen in eyes with AMD. Although cone spacing was often normal at baseline and remained normal over time, these regions showed focal areas of decreased cone reflectivity. These findings may provide insight into the pathophysiology of AMD progression. (ClinicalTrials.gov number, NCT00254605).

Abstract

PURPOSE:
To evaluate cone spacing using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with nonneovascular AMD, and to correlate progression of AOSLO-derived cone measures with standard measures of macular structure.
METHODS:
Adaptive optics scanning laser ophthalmoscopy images were obtained over 12 to 21 months from seven patients with AMD including four eyes with geographic atrophy (GA) and four eyes with drusen. Adaptive optics scanning laser ophthalmoscopy images were overlaid with color, infrared, and autofluorescence fundus photographs and spectral domain optical coherence tomography (SD-OCT) images to allow direct correlation of cone parameters with macular structure. Cone spacing was measured for each visit in selected regions including areas over drusen (n = 29), at GA margins (n = 14), and regions without drusen or GA (n = 13) and compared with normal, age-similar values.
RESULTS:
Adaptive optics scanning laser ophthalmoscopy imaging revealed continuous cone mosaics up to the GA edge and overlying drusen, although reduced cone reflectivity often resulted in hyporeflective AOSLO signals at these locations. Baseline cone spacing measures were normal in 13/13 unaffected regions, 26/28 drusen regions, and 12/14 GA margin regions. Although standard clinical measures showed progression of GA in all study eyes, cone spacing remained within normal ranges in most drusen regions and all GA margin regions.
CONCLUSIONS:
Adaptive optics scanning laser ophthalmoscopy provides adequate resolution for quantitative measurement of cone spacing at the margin of GA and over drusen in eyes with AMD. Although cone spacing was often normal at baseline and remained normal over time, these regions showed focal areas of decreased cone reflectivity. These findings may provide insight into the pathophysiology of AMD progression. (ClinicalTrials.gov number, NCT00254605).

Statistics

Citations

Dimensions.ai Metrics
60 citations in Web of Science®
64 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 27 Feb 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Ophthalmology Clinic
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Ophthalmology
Life Sciences > Sensory Systems
Life Sciences > Cellular and Molecular Neuroscience
Language:English
Date:2013
Deposited On:27 Feb 2014 09:31
Last Modified:11 Nov 2023 02:42
Publisher:Association for Research in Vision and Ophthalmology
ISSN:0146-0404
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1167/iovs.13-12433
PubMed ID:24135755