Header

UZH-Logo

Maintenance Infos

The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression


Miranda, Melroy X; van Tits, Lambertus J; Lohmann, Christine; Arsiwala, Tasneem; Winnik, Stephan; Tailleux, Anne; Stein, Sokrates; Gomes, Ana P; Suri, Vipin; Ellis, James L; Lutz, Thomas A; Hottiger, Michael O; Sinclair, David A; Auwerx, Johan; Schoonjans, Kristina; Staels, Bart; Lüscher, Thomas F; Matter, Christian M (2015). The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. European Heart Journal, 36(1):51-59.

Abstract

AIMS: The deacetylase sirtuin 1 (Sirt1) exerts beneficial effects on lipid metabolism, but its roles in plasma LDL-cholesterol regulation and atherosclerosis are controversial. Thus, we applied the pharmacological Sirt1 activator SRT3025 in a mouse model of atherosclerosis and in hepatocyte culture.
METHODS AND RESULTS: Apolipoprotein E-deficient (Apoe(-/-)) mice were fed a high-cholesterol diet (1.25% w/w) supplemented with SRT3025 (3.18 g kg(-1) diet) for 12 weeks. In vitro, the drug activated wild-type Sirt1 protein, but not the activation-resistant Sirt1 mutant; in vivo, it increased deacetylation of hepatic p65 and skeletal muscle Foxo1. SRT3025 treatment decreased plasma levels of LDL-cholesterol and total cholesterol and reduced atherosclerosis. Drug treatment did not change mRNA expression of hepatic LDL receptor (Ldlr) and proprotein convertase subtilisin/kexin type 9 (Pcsk9), but increased their protein expression indicating post-translational effects. Consistent with hepatocyte Ldlr and Pcsk9 accumulation, we found reduced plasma levels of Pcsk9 after pharmacological Sirt1 activation. In vitro administration of SRT3025 to cultured AML12 hepatocytes attenuated Pcsk9 secretion and its binding to Ldlr, thereby reducing Pcsk9-mediated Ldlr degradation and increasing Ldlr expression and LDL uptake. Co-administration of exogenous Pcsk9 with SRT3025 blunted these effects. Sirt1 activation with SRT3025 in Ldlr(-/-) mice reduced neither plasma Pcsk9, nor LDL-cholesterol levels, nor atherosclerosis.
CONCLUSION: We identify reduction in Pcsk9 secretion as a novel effect of Sirt1 activity and uncover Ldlr as a prerequisite for Sirt1-mediated atheroprotection in mice. Pharmacological activation of Sirt1 appears promising to be tested in patients for its effects on plasma Pcsk9, LDL-cholesterol, and atherosclerosis.

Abstract

AIMS: The deacetylase sirtuin 1 (Sirt1) exerts beneficial effects on lipid metabolism, but its roles in plasma LDL-cholesterol regulation and atherosclerosis are controversial. Thus, we applied the pharmacological Sirt1 activator SRT3025 in a mouse model of atherosclerosis and in hepatocyte culture.
METHODS AND RESULTS: Apolipoprotein E-deficient (Apoe(-/-)) mice were fed a high-cholesterol diet (1.25% w/w) supplemented with SRT3025 (3.18 g kg(-1) diet) for 12 weeks. In vitro, the drug activated wild-type Sirt1 protein, but not the activation-resistant Sirt1 mutant; in vivo, it increased deacetylation of hepatic p65 and skeletal muscle Foxo1. SRT3025 treatment decreased plasma levels of LDL-cholesterol and total cholesterol and reduced atherosclerosis. Drug treatment did not change mRNA expression of hepatic LDL receptor (Ldlr) and proprotein convertase subtilisin/kexin type 9 (Pcsk9), but increased their protein expression indicating post-translational effects. Consistent with hepatocyte Ldlr and Pcsk9 accumulation, we found reduced plasma levels of Pcsk9 after pharmacological Sirt1 activation. In vitro administration of SRT3025 to cultured AML12 hepatocytes attenuated Pcsk9 secretion and its binding to Ldlr, thereby reducing Pcsk9-mediated Ldlr degradation and increasing Ldlr expression and LDL uptake. Co-administration of exogenous Pcsk9 with SRT3025 blunted these effects. Sirt1 activation with SRT3025 in Ldlr(-/-) mice reduced neither plasma Pcsk9, nor LDL-cholesterol levels, nor atherosclerosis.
CONCLUSION: We identify reduction in Pcsk9 secretion as a novel effect of Sirt1 activity and uncover Ldlr as a prerequisite for Sirt1-mediated atheroprotection in mice. Pharmacological activation of Sirt1 appears promising to be tested in patients for its effects on plasma Pcsk9, LDL-cholesterol, and atherosclerosis.

Statistics

Citations

Dimensions.ai Metrics
98 citations in Web of Science®
103 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

61 downloads since deposited on 26 Mar 2014
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > Center for Integrative Human Physiology
05 Vetsuisse Faculty > Institute of Veterinary Physiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiology
05 Vetsuisse Faculty > Department of Molecular Mechanisms of Disease
07 Faculty of Science > Department of Molecular Mechanisms of Disease
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Health Sciences > Cardiology and Cardiovascular Medicine
Language:English
Date:2015
Deposited On:26 Mar 2014 15:24
Last Modified:24 Jan 2022 03:55
Publisher:Oxford University Press
ISSN:0195-668X
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/eurheartj/ehu095
PubMed ID:24603306
  • Content: Published Version
  • Language: English
  • Description: Nationallizenz 142-005