Header

UZH-Logo

Maintenance Infos

Sugar antennae for guidance signals: syndecans and glypicans integrate directional cues for navigating neurons.


Rhiner, C; Hengartner, M O (2006). Sugar antennae for guidance signals: syndecans and glypicans integrate directional cues for navigating neurons. Scientific World Journal, 6:1024-1036.

Abstract

Attractive and repulsive signals guide migrating nerve cells in all directions when the nervous system starts to form. The neurons extend thin processes, axons, that connect over wide distances with other brain cells to form a complicated neuronal network. One of the most fascinating questions in neuroscience is how the correct wiring of billions of nerve cells in our brain is controlled. Several protein families are known to serve as guidance cues for navigating neurons and axons. Nevertheless, the combinatorial potential of these proteins seems to be insufficient to sculpt the entire neuronal network and the appropriate formation of connections. Recently, heparan sulfate proteoglycans (HSPGs), which are present on the cell surface of neurons and in the extracellular matrix through which neurons and axons migrate, have been found to play a role in regulating cell migration and axon guidance. Intriguingly, the large number of distinct modifications that can be put onto the sugar side chains of these PGs would in principle allow for an enormous diversity of HSPGs, which could help in regulating the vast number of guidance choices taken by individual neurons. In this review, we will focus on the role of the cell surface HSPGs syndecan and glypican and specific HS modifications in promoting neuronal migration, axon guidance, and synapse formation.

Abstract

Attractive and repulsive signals guide migrating nerve cells in all directions when the nervous system starts to form. The neurons extend thin processes, axons, that connect over wide distances with other brain cells to form a complicated neuronal network. One of the most fascinating questions in neuroscience is how the correct wiring of billions of nerve cells in our brain is controlled. Several protein families are known to serve as guidance cues for navigating neurons and axons. Nevertheless, the combinatorial potential of these proteins seems to be insufficient to sculpt the entire neuronal network and the appropriate formation of connections. Recently, heparan sulfate proteoglycans (HSPGs), which are present on the cell surface of neurons and in the extracellular matrix through which neurons and axons migrate, have been found to play a role in regulating cell migration and axon guidance. Intriguingly, the large number of distinct modifications that can be put onto the sugar side chains of these PGs would in principle allow for an enormous diversity of HSPGs, which could help in regulating the vast number of guidance choices taken by individual neurons. In this review, we will focus on the role of the cell surface HSPGs syndecan and glypican and specific HS modifications in promoting neuronal migration, axon guidance, and synapse formation.

Statistics

Citations

Dimensions.ai Metrics
19 citations in Web of Science®
21 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

5 downloads since deposited on 11 Feb 2008
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Physical Sciences > General Environmental Science
Language:English
Date:25 August 2006
Deposited On:11 Feb 2008 12:19
Last Modified:30 Jun 2022 23:25
Publisher:The Scientific World
ISSN:1537-744X
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1100/tsw.2006.202
PubMed ID:16937008
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)