BACKGROUND: The effects of running and cycling on changes in hydration status and body composition during a 24-hour race have been described previously, but data for 24-hour ultra-mountain bikers are missing. The present study investigated changes in foot volume, body composition, and hydration status in male and female 24-hour ultra-mountain bikers. METHODS: We compared in 49 (37 men and 12 women) 24-hour ultra-mountain bikers (ultra-MTBers) changes (Delta) in body mass (BM). Fat mass (FM), percent body fat (%BF) and skeletal muscle mass (SM) were estimated using anthropometric methods. Changes in total body water (TBW), extracellular fluid (ECF) and intracellular fluid (ICF) were determined using bioelectrical impedance and changes in foot volume using plethysmography. Haematocrit, plasma [Na+], plasma urea, plasma osmolality, urine urea, urine specific gravity and urine osmolality were measured in a subgroup of 25 ultra-MTBers (16 men and 9 women). RESULTS: In male 24-hour ultra-MTBers, BM (P < 0.001), FM (P < 0.001), %BF (P < 0.001) and ECF (P < 0.05) decreased whereas SM and TBW did not change (P > 0.05). A significant correlation was found between post-race BM and post-race FM (r = 0.63, P < 0.001). In female ultra-MTBers, BM (P < 0.05), %BF (P < 0.05) and FM (P < 0.001) decreased, whereas SM, ECF and TBW remained stable (P > 0.05). Absolute ranking in the race was related to Delta%BM (P < 0.001) and Delta%FM in men (P < 0.001) and to Delta%BM (P < 0.05) in women. In male ultra-MTBers, increased post-race plasma urea (P < 0.001) was negatively related to absolute ranking in the race, Delta%BM, post-race FM and Delta%ECF (P < 0.05). Foot volume remained stable in both sexes (P > 0.05). CONCLUSIONS: Male and female 24-hour ultra-MTBers experienced a significant loss in BM and FM, whereas SM remained stable. Body weight changes and increases in plasma urea do not reflect a change in body hydration status. No oedema of the lower limbs occurred.
Abstract
BACKGROUND: The effects of running and cycling on changes in hydration status and body composition during a 24-hour race have been described previously, but data for 24-hour ultra-mountain bikers are missing. The present study investigated changes in foot volume, body composition, and hydration status in male and female 24-hour ultra-mountain bikers. METHODS: We compared in 49 (37 men and 12 women) 24-hour ultra-mountain bikers (ultra-MTBers) changes (Delta) in body mass (BM). Fat mass (FM), percent body fat (%BF) and skeletal muscle mass (SM) were estimated using anthropometric methods. Changes in total body water (TBW), extracellular fluid (ECF) and intracellular fluid (ICF) were determined using bioelectrical impedance and changes in foot volume using plethysmography. Haematocrit, plasma [Na+], plasma urea, plasma osmolality, urine urea, urine specific gravity and urine osmolality were measured in a subgroup of 25 ultra-MTBers (16 men and 9 women). RESULTS: In male 24-hour ultra-MTBers, BM (P < 0.001), FM (P < 0.001), %BF (P < 0.001) and ECF (P < 0.05) decreased whereas SM and TBW did not change (P > 0.05). A significant correlation was found between post-race BM and post-race FM (r = 0.63, P < 0.001). In female ultra-MTBers, BM (P < 0.05), %BF (P < 0.05) and FM (P < 0.001) decreased, whereas SM, ECF and TBW remained stable (P > 0.05). Absolute ranking in the race was related to Delta%BM (P < 0.001) and Delta%FM in men (P < 0.001) and to Delta%BM (P < 0.05) in women. In male ultra-MTBers, increased post-race plasma urea (P < 0.001) was negatively related to absolute ranking in the race, Delta%BM, post-race FM and Delta%ECF (P < 0.05). Foot volume remained stable in both sexes (P > 0.05). CONCLUSIONS: Male and female 24-hour ultra-MTBers experienced a significant loss in BM and FM, whereas SM remained stable. Body weight changes and increases in plasma urea do not reflect a change in body hydration status. No oedema of the lower limbs occurred.
TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.