Header

UZH-Logo

Maintenance Infos

Chasing central nervous system plasticity: the brainstem's contribution to locomotor recovery in rats with spinal cord injury


Zörner, Björn; Bachmann, Lukas C; Filli, Linard; Kapitza, Sandra; Gullo, Miriam; Bolliger, Marc; Starkey, Michelle L; Röthlisberger, Martina; Gonzenbach, Roman R; Schwab, Martin E (2014). Chasing central nervous system plasticity: the brainstem's contribution to locomotor recovery in rats with spinal cord injury. Brain, 137(Pt 6):1716-1732.

Abstract

Anatomical plasticity such as fibre growth and the formation of new connections in the cortex and spinal cord is one known mechanism mediating functional recovery after damage to the central nervous system. Little is known about anatomical plasticity in the brainstem, which contains key locomotor regions. We compared changes of the spinal projection pattern of the major descending systems following a cervical unilateral spinal cord hemisection in adult rats. As in humans (Brown-Séquard syndrome), this type of injury resulted in a permanent loss of fine motor control of the ipsilesional fore- and hindlimb, but for basic locomotor functions substantial recovery was observed. Antero- and retrograde tracings revealed spontaneous changes in spinal projections originating from the reticular formation, in particular from the contralesional gigantocellular reticular nucleus: more reticulospinal fibres from the intact hemicord crossed the spinal midline at cervical and lumbar levels. The intact-side rubrospinal tract showed a statistically not significant tendency towards an increased number of midline crossings after injury. In contrast, the corticospinal and the vestibulospinal tract, as well as serotonergic projections, showed little or no side-switching in this lesion paradigm. Spinal adaptations were accompanied by modifications at higher levels of control including side-switching of the input to the gigantocellular reticular nuclei from the mesencephalic locomotor region. Electrolytic microlesioning of one or both gigantocellular reticular nuclei in behaviourally recovered rats led to the reappearance of the impairments observed acutely after the initial injury showing that anatomical plasticity in defined brainstem motor networks contributes significantly to functional recovery after injury of the central nervous system.

Abstract

Anatomical plasticity such as fibre growth and the formation of new connections in the cortex and spinal cord is one known mechanism mediating functional recovery after damage to the central nervous system. Little is known about anatomical plasticity in the brainstem, which contains key locomotor regions. We compared changes of the spinal projection pattern of the major descending systems following a cervical unilateral spinal cord hemisection in adult rats. As in humans (Brown-Séquard syndrome), this type of injury resulted in a permanent loss of fine motor control of the ipsilesional fore- and hindlimb, but for basic locomotor functions substantial recovery was observed. Antero- and retrograde tracings revealed spontaneous changes in spinal projections originating from the reticular formation, in particular from the contralesional gigantocellular reticular nucleus: more reticulospinal fibres from the intact hemicord crossed the spinal midline at cervical and lumbar levels. The intact-side rubrospinal tract showed a statistically not significant tendency towards an increased number of midline crossings after injury. In contrast, the corticospinal and the vestibulospinal tract, as well as serotonergic projections, showed little or no side-switching in this lesion paradigm. Spinal adaptations were accompanied by modifications at higher levels of control including side-switching of the input to the gigantocellular reticular nuclei from the mesencephalic locomotor region. Electrolytic microlesioning of one or both gigantocellular reticular nuclei in behaviourally recovered rats led to the reappearance of the impairments observed acutely after the initial injury showing that anatomical plasticity in defined brainstem motor networks contributes significantly to functional recovery after injury of the central nervous system.

Statistics

Citations

Dimensions.ai Metrics
80 citations in Web of Science®
80 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Neurology (clinical)
Language:English
Date:June 2014
Deposited On:17 Jun 2014 16:04
Last Modified:24 Jan 2022 04:19
Publisher:Oxford University Press
ISSN:0006-8950
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/brain/awu078
PubMed ID:24736305
Full text not available from this repository.