Header

UZH-Logo

Maintenance Infos

Relationship of anthropometric and training characteristics with race performance in endurance and ultra-endurance athletes


Knechtle, Beat (2014). Relationship of anthropometric and training characteristics with race performance in endurance and ultra-endurance athletes. Asian Journal of Sports Medicine, 5(2):73-90.

Abstract

A variety of anthropometric and training characteristics have been identified as predictor variables for race performance in endurance and ultra-endurance athletes. Anthropometric characteristics such as skin-fold thicknesses, body fat, circumferences and length of limbs, body mass, body height, and body mass index were bi-variately related to race performance in endurance athletes such as swimmers in pools and in open water, in road and mountain bike cyclists, and in runners and triathletes over different distances. Additionally, training variables such as volume and speed were also bi-variately associated with race performance. Multi-variate regression analyses including anthropometric and training characteristics reduced the predictor variables mainly to body fat and speed during training units. Further multi-variate regression analyses including additionally the aspects of previous experience such as personal best times showed that mainly previous best time in shorter races were the most important predictors for ultra-endurance race times. Ultra-endurance athletes seemed to prepare differently for their races compared to endurance athletes where ultra-endurance athletes invested more time in training and completed more training kilometers at lower speed compared to endurance athletes. In conclusion, the most important predictor variables for ultra-endurance athletes were a fast personal best time in shorter races, a low body fat and a high speed during training units.

Abstract

A variety of anthropometric and training characteristics have been identified as predictor variables for race performance in endurance and ultra-endurance athletes. Anthropometric characteristics such as skin-fold thicknesses, body fat, circumferences and length of limbs, body mass, body height, and body mass index were bi-variately related to race performance in endurance athletes such as swimmers in pools and in open water, in road and mountain bike cyclists, and in runners and triathletes over different distances. Additionally, training variables such as volume and speed were also bi-variately associated with race performance. Multi-variate regression analyses including anthropometric and training characteristics reduced the predictor variables mainly to body fat and speed during training units. Further multi-variate regression analyses including additionally the aspects of previous experience such as personal best times showed that mainly previous best time in shorter races were the most important predictors for ultra-endurance race times. Ultra-endurance athletes seemed to prepare differently for their races compared to endurance athletes where ultra-endurance athletes invested more time in training and completed more training kilometers at lower speed compared to endurance athletes. In conclusion, the most important predictor variables for ultra-endurance athletes were a fast personal best time in shorter races, a low body fat and a high speed during training units.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

114 downloads since deposited on 23 Jun 2014
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of General Practice
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Orthopedics and Sports Medicine
Language:English
Date:2014
Deposited On:23 Jun 2014 15:07
Last Modified:04 Nov 2023 08:08
Publisher:Tehran University of Medical Sciences
ISSN:2008-000X
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
PubMed ID:25834701
  • Content: Published Version
  • Language: English