Header

UZH-Logo

Maintenance Infos

Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface γ-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP)


Maier, Patrick J; Zemoura, Khaled; Acuña, Mario A; Yévenes, Gonzalo E; Zeilhofer, Hanns Ulrich; Benke, Dietmar (2014). Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface γ-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP). Journal of Biological Chemistry, 289(18):12896-12907.

Abstract

Cerebral ischemia frequently leads to long-term disability and death. Excitotoxicity is believed to be the main cause for ischemia-induced neuronal death. Although a role of glutamate receptors in this process has been firmly established, the contribution of metabotropic GABAB receptors, which control excitatory neurotransmission, is less clear. A prominent characteristic of ischemic insults is endoplasmic reticulum (ER) stress associated with the up-regulation of the transcription factor CCAAT/enhancer-binding protein-homologous protein (CHOP). After inducing ER stress in cultured cortical neurons by sustained Ca(2+) release from intracellular stores or by a brief episode of oxygen and glucose deprivation (in vitro model of cerebral ischemia), we observed an increased expression of CHOP accompanied by a strong reduction of cell surface GABAB receptors. Our results indicate that down-regulation of cell surface GABAB receptors is caused by the interaction of the receptors with CHOP in the ER. Binding of CHOP prevented heterodimerization of the receptor subunits GABAB1 and GABAB2 and subsequent forward trafficking of the receptors to the cell surface. The reduced level of cell surface receptors diminished GABAB receptor signaling and, thus, neuronal inhibition. These findings indicate that ischemia-mediated up-regulation of CHOP down-regulates cell surface GABAB receptors by preventing their trafficking from the ER to the plasma membrane. This mechanism leads to diminished neuronal inhibition and may contribute to excitotoxicity in cerebral ischemia.

Abstract

Cerebral ischemia frequently leads to long-term disability and death. Excitotoxicity is believed to be the main cause for ischemia-induced neuronal death. Although a role of glutamate receptors in this process has been firmly established, the contribution of metabotropic GABAB receptors, which control excitatory neurotransmission, is less clear. A prominent characteristic of ischemic insults is endoplasmic reticulum (ER) stress associated with the up-regulation of the transcription factor CCAAT/enhancer-binding protein-homologous protein (CHOP). After inducing ER stress in cultured cortical neurons by sustained Ca(2+) release from intracellular stores or by a brief episode of oxygen and glucose deprivation (in vitro model of cerebral ischemia), we observed an increased expression of CHOP accompanied by a strong reduction of cell surface GABAB receptors. Our results indicate that down-regulation of cell surface GABAB receptors is caused by the interaction of the receptors with CHOP in the ER. Binding of CHOP prevented heterodimerization of the receptor subunits GABAB1 and GABAB2 and subsequent forward trafficking of the receptors to the cell surface. The reduced level of cell surface receptors diminished GABAB receptor signaling and, thus, neuronal inhibition. These findings indicate that ischemia-mediated up-regulation of CHOP down-regulates cell surface GABAB receptors by preventing their trafficking from the ER to the plasma membrane. This mechanism leads to diminished neuronal inhibition and may contribute to excitotoxicity in cerebral ischemia.

Statistics

Citations

Dimensions.ai Metrics
37 citations in Web of Science®
38 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

46 downloads since deposited on 30 Jul 2014
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Biochemistry
Life Sciences > Molecular Biology
Life Sciences > Cell Biology
Language:English
Date:2 May 2014
Deposited On:30 Jul 2014 14:30
Last Modified:24 Jan 2022 04:30
Publisher:American Society for Biochemistry and Molecular Biology
ISSN:0021-9258
Additional Information:This research was originally published in Maier, Patrick J; Zemoura, Khaled; Acuña, Mario A; Yévenes, Gonzalo E; Zeilhofer, Hanns Ulrich; Benke, Dietmar (2014). Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface γ-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP). Journal of Biological Chemistry, 289(18):12896-12907. © the American Society for Biochemistry and Molecular Biology.
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1074/jbc.M114.550517
PubMed ID:24668805