Header

UZH-Logo

Maintenance Infos

Optimization of human skeletal muscle precursor cell culture and myofiber formation in vitro


Eberli, D; Soker, S; Atala, A; Yoo, J J (2009). Optimization of human skeletal muscle precursor cell culture and myofiber formation in vitro. Methods, 47(2):98-103.

Abstract

Muscle bioengineering is proposed as a treatment option for various conditions requiring restoration of muscle function. In order to allow for rapid clinical translation culture conditions have to be optimized for human application. The optimal isolation and culture technique should be able to support cell growth and differentiation using defined media only. Therefore, we have evaluated alternative culture conditions to determine the optimal growth condition for the engineering of human skeletal muscle. In this research, we present protocols for consistent isolation and growth of human muscle precursor cells (MPCs). MPCs were grown from human biopsies and expanded in culture using defined media and collagen coated dishes only. The best results were achieved using a one-step pre-plating and by supplementing the growth medium with insulin, dexamethasone, human fibroblast growth factor (hFGF) and human basic endothelial growth factor (hEGF). Detailed cell characterization using fluorescence-activated cell-sorting analysis and morphological analysis at different passages were performed. Further, the applicability of these cells for tissue engineering purposes was assessed by measuring expansion potential, formation of myofibers and fused myotubes. We have established a culture technique for human MPCs that allows for reliable cell growth and expansion using collagen coated dishes and defined media only. Cell characterization demonstrated a muscle phenotype and the ability to form myofibers in vitro.

Abstract

Muscle bioengineering is proposed as a treatment option for various conditions requiring restoration of muscle function. In order to allow for rapid clinical translation culture conditions have to be optimized for human application. The optimal isolation and culture technique should be able to support cell growth and differentiation using defined media only. Therefore, we have evaluated alternative culture conditions to determine the optimal growth condition for the engineering of human skeletal muscle. In this research, we present protocols for consistent isolation and growth of human muscle precursor cells (MPCs). MPCs were grown from human biopsies and expanded in culture using defined media and collagen coated dishes only. The best results were achieved using a one-step pre-plating and by supplementing the growth medium with insulin, dexamethasone, human fibroblast growth factor (hFGF) and human basic endothelial growth factor (hEGF). Detailed cell characterization using fluorescence-activated cell-sorting analysis and morphological analysis at different passages were performed. Further, the applicability of these cells for tissue engineering purposes was assessed by measuring expansion potential, formation of myofibers and fused myotubes. We have established a culture technique for human MPCs that allows for reliable cell growth and expansion using collagen coated dishes and defined media only. Cell characterization demonstrated a muscle phenotype and the ability to form myofibers in vitro.

Statistics

Citations

Dimensions.ai Metrics
52 citations in Web of Science®
54 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 07 Jan 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Urological Clinic
04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Molecular Biology
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Language:English
Date:February 2009
Deposited On:07 Jan 2009 14:27
Last Modified:25 Jun 2022 08:29
Publisher:Elsevier
ISSN:1046-2023
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.ymeth.2008.10.016
PubMed ID:18952174