Header

UZH-Logo

Maintenance Infos

Data management system for distributed virtual screening


Zhou, T; Caflisch, A (2009). Data management system for distributed virtual screening. Journal of Chemical Information and Modeling, 49(1):145-152.

Abstract

High throughput docking (HTD) using high performance computing platforms is a multidisciplinary challenge. To handle HTD data effectively and efficiently, we have developed a distributed virtual screening data management system (DVSDMS) in which the data handling and the distribution of jobs are realized by the open-source structured query language database software MySQL. The essential concept of DVSDMS is the separation of the data management from the docking and ranking applications. DVSDMS can be used to dock millions of molecules effectively, monitor the process in real time, analyze docking results promptly, and process up to 10(8) poses by energy ranking techniques. In an HTD campaign to identify kinase inhibitors a low cost Linux PC has allowed DVSDMS to efficiently assign the workload to more than 500 computing clients. Notably, in a stress test of DVSDMS that emulated a large number of clients, about 60 molecules per second were distributed to the clients for docking, which indicates that DVSDMS can run efficiently on very large compute cluster (up to about 40000 cores).

Abstract

High throughput docking (HTD) using high performance computing platforms is a multidisciplinary challenge. To handle HTD data effectively and efficiently, we have developed a distributed virtual screening data management system (DVSDMS) in which the data handling and the distribution of jobs are realized by the open-source structured query language database software MySQL. The essential concept of DVSDMS is the separation of the data management from the docking and ranking applications. DVSDMS can be used to dock millions of molecules effectively, monitor the process in real time, analyze docking results promptly, and process up to 10(8) poses by energy ranking techniques. In an HTD campaign to identify kinase inhibitors a low cost Linux PC has allowed DVSDMS to efficiently assign the workload to more than 500 computing clients. Notably, in a stress test of DVSDMS that emulated a large number of clients, about 60 molecules per second were distributed to the clients for docking, which indicates that DVSDMS can run efficiently on very large compute cluster (up to about 40000 cores).

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 08 Jan 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Physical Sciences > General Chemistry
Physical Sciences > General Chemical Engineering
Physical Sciences > Computer Science Applications
Social Sciences & Humanities > Library and Information Sciences
Language:English
Date:2009
Deposited On:08 Jan 2009 09:11
Last Modified:02 Dec 2023 02:37
Publisher:American Chemical Society
ISSN:1549-9596
OA Status:Closed
Publisher DOI:https://doi.org/10.1021/ci800295q
PubMed ID:19072299