Header

UZH-Logo

Maintenance Infos

Enhanced Cytotoxicity through Conjugation of a "Clickable" Luminescent Re(I) Complex to a Cell-Penetrating Lipopeptide


Leonidova, Anna; Pierroz, Vanessa; Adams, Luke A; Barlow, Nicholas; Ferrari, Stefano; Graham, Bim; Gasser, Gilles (2014). Enhanced Cytotoxicity through Conjugation of a "Clickable" Luminescent Re(I) Complex to a Cell-Penetrating Lipopeptide. ACS Medicinal Chemistry Letters, 5(7):809-814.

Abstract

Re(I) tricarbonyl polypyridine-based complexes are particularly attractive metal complexes in the field of inorganic chemical biology due to their luminescent properties, ease of conjugation to targeting biomolecules, and the possibility to prepare their "hot" (99m)Tc analogues for radioimaging. In this study, we prepared and characterized a novel, "clickable" complex, [Re(2,2'-bipyridine)(3-ethynylpyridine)(CO)3](BF4) ([Re(CO) 3 (bipy)(py-alkyne)](BF 4 )), exhibiting the characteristic luminescent properties and moderate cytotoxicity of this general class of compound. Using Cu(I)-catalyzed "click" chemistry, the complex was efficiently attached to a lipidated peptide known to increase cell permeability, namely, the myristoylated HIV-1 Tat peptide (myr-Tat), to give Re-myr-Tat. Fluorescence microscopy localization in human cervical cancer cells (HeLa) confirmed enhanced cellular uptake of Re-myr-Tat compared with [Re(CO) 3 (bipy)(py-alkyne)](BF 4 ), and cytotoxicity studies showed that this resulted in an increase in potency to a level comparable with cisplatin (13.0 ± 2.0 μM).

Abstract

Re(I) tricarbonyl polypyridine-based complexes are particularly attractive metal complexes in the field of inorganic chemical biology due to their luminescent properties, ease of conjugation to targeting biomolecules, and the possibility to prepare their "hot" (99m)Tc analogues for radioimaging. In this study, we prepared and characterized a novel, "clickable" complex, [Re(2,2'-bipyridine)(3-ethynylpyridine)(CO)3](BF4) ([Re(CO) 3 (bipy)(py-alkyne)](BF 4 )), exhibiting the characteristic luminescent properties and moderate cytotoxicity of this general class of compound. Using Cu(I)-catalyzed "click" chemistry, the complex was efficiently attached to a lipidated peptide known to increase cell permeability, namely, the myristoylated HIV-1 Tat peptide (myr-Tat), to give Re-myr-Tat. Fluorescence microscopy localization in human cervical cancer cells (HeLa) confirmed enhanced cellular uptake of Re-myr-Tat compared with [Re(CO) 3 (bipy)(py-alkyne)](BF 4 ), and cytotoxicity studies showed that this resulted in an increase in potency to a level comparable with cisplatin (13.0 ± 2.0 μM).

Statistics

Citations

Dimensions.ai Metrics
58 citations in Web of Science®
59 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

105 downloads since deposited on 30 Sep 2014
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research

07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > Biochemistry
Life Sciences > Drug Discovery
Physical Sciences > Organic Chemistry
Language:English
Date:10 July 2014
Deposited On:30 Sep 2014 15:25
Last Modified:24 Jan 2022 04:45
Publisher:American Chemical Society
ISSN:1948-5875
Additional Information:Copyright © American Chemical Society
OA Status:Green
Publisher DOI:https://doi.org/10.1021/ml500158w
PubMed ID:25050170