Header

UZH-Logo

Maintenance Infos

Testing the stages model in the adaptive radiation of cichlid fishes in East African Lake Tanganyika


Muschick, M; Nosil, P; Roesti, M; Dittmann, Marie T; Harmon, L; Salzburger, W (2014). Testing the stages model in the adaptive radiation of cichlid fishes in East African Lake Tanganyika. Proceedings of the Royal Society of London, Series B: Biological Sciences, 281(1795):online.

Abstract

Adaptive radiation (AR) is a key process in the origin of organismal diversity. However, the evolution of trait disparity in connection with ecological specialization is still poorly understood. Available models for vertebrate ARs predict that diversification occurs in the form of temporal stages driven by different selective forces. Here, we investigate the AR of cichlid fishes in East African Lake Tanganyika and use macroevolutionary model fitting to evaluate whether diversification happened in temporal stages. Six trait complexes, for which we also provide evidence of their adaptiveness, are analysed with comparative methods: body shape, pharyngeal jaw shape, gill raker traits, gut length, brain weight and body coloration. Overall, we do not find strong evidence for the ‘stages model’ of AR. However, our results suggest that trophic traits diversify earlier than traits implicated in macrohabitat adaptation and that sexual communication traits (i.e. coloration) diversify late in the radiation.

Abstract

Adaptive radiation (AR) is a key process in the origin of organismal diversity. However, the evolution of trait disparity in connection with ecological specialization is still poorly understood. Available models for vertebrate ARs predict that diversification occurs in the form of temporal stages driven by different selective forces. Here, we investigate the AR of cichlid fishes in East African Lake Tanganyika and use macroevolutionary model fitting to evaluate whether diversification happened in temporal stages. Six trait complexes, for which we also provide evidence of their adaptiveness, are analysed with comparative methods: body shape, pharyngeal jaw shape, gill raker traits, gut length, brain weight and body coloration. Overall, we do not find strong evidence for the ‘stages model’ of AR. However, our results suggest that trophic traits diversify earlier than traits implicated in macrohabitat adaptation and that sexual communication traits (i.e. coloration) diversify late in the radiation.

Statistics

Citations

Dimensions.ai Metrics
41 citations in Web of Science®
43 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 14 Oct 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Immunology and Microbiology
Physical Sciences > General Environmental Science
Life Sciences > General Agricultural and Biological Sciences
Language:English
Date:2014
Deposited On:14 Oct 2014 14:10
Last Modified:24 Jan 2022 04:51
Publisher:Royal Society Publishing
ISSN:0962-8452
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1098/rspb.2014.0605
PubMed ID:25274371