Header

UZH-Logo

Maintenance Infos

Browse by Creators

Navigate back| Up a level
Export as
Number of items: 9.

Tomás, V; Rosenthal, J; Smarandache, R (2010). Reverse-maximum distance profile convolutional codes over the erasure channel. In: 19th International Symposium on Mathematical Theory of Networks and Systems, MTNS 2010, Budapest, HU, 5 July 2010 - 9 July 2010, 1212-2127.

Tomás, V; Rosenthal, J; Smarandache, R (2009). Decoding of MDP convolutional codes over the erasure channel. In: IEEE. 2009 IEEE International Symposium on Information Theory, ISIT 2009, Seoul, Korea, 28 June - 03 July 2009. New York, US: Institute of Electrical and Electronics Engineer, 556-560.

Gluesing-Luerssen, H; Rosenthal, J; Smarandache, R (2006). Strongly-MDS convolutional codes. IEEE Transactions on Information Theory, 52(2):584-598.

Hutchinson, R; Rosenthal, J; Smarandache, R (2005). Convolutional codes with maximum distance profile. Systems & Control Letters, 54(1):53-63.

Smarandache, R; Gluesing-Luerssen, H; Rosenthal, J (2001). Constructions of MDS-convolutional codes. IEEE Transactions on Information Theory, 47(5):2045-2049.

Smarandache, R; Gluesing-Luerssen, H; Rosenthal, J (2000). Construction results for MDS-convolutional codes. In: IEEE. Proceedings 2000 IEEE International Symposium on Information Theory. Piscataway: IEEE Service Center, 294.

Rosenthal, J; Smarandache, R (1999). Maximum distance separable convolutional codes. Applicable Algebra in Engineering, Communication and Computing, 10(1):15-32.

Smarandache, R; Rosenthal, J (1998). A state space approach for constructing MDS rate 1/n convolutional codes. In: 1998 Information Theory Workshop. Piscataway, NJ: IEEE, 116-117.

Smarandache, R; Rosenthal, J (1998). Convolutional code constructions resulting in maximal or near maximal free distance. In: 1998 IEEE International Symposium on Information Theory. Proceedings. Piscataway, NJ: IEEE, 308.

This list was generated on Sat Jan 19 07:57:34 2019 CET.