UZH-Logo

Extensive training of elementary finger tapping movements changes the pattern of motor cortex excitability


Koeneke, Susan; Lutz, Kai; Herwig, Uwe; Ziemann, U; Jäncke, Lutz (2006). Extensive training of elementary finger tapping movements changes the pattern of motor cortex excitability. Experimental Brain Research, 174(2):199-209.

Abstract

There is evidence of a strong capacity for functional and structural reorganization in the human motor system. However, past research has focused mainly on complex movement sequences over rather short training durations. In this study we investigated changes in corticospinal excitability associated with longer training of elementary, maximum-speed tapping movements. All participating subjects were consistent right-handers and were trained using either the right (experiment 1) or the left thumb (experiment 2). Transcranial magnetic stimulation was applied to obtain motor evoked potentials (MEPs) from the abductor pollicis brevis (APB) muscle of the right and the left hand before and after training. As a result of training, a significant increase was observed in tapping speed accompanied by increased MEPs, recorded from the trained APB muscle, following contralateral M1 stimulation. In the case of subdominant-hand training we additionally demonstrate increased MEP amplitudes evoked at the right APB (untrained hand) in the first training week. Enhanced corticospinal excitability associated with practice of elementary movements may constitute a necessary precursor for inducing plastic changes within the motor system. The involvement of the ipsilateral left M1 likely reflects the predominant role of the left M1 in the general control (modification) of simple motor parameters in right-handed subjects.

There is evidence of a strong capacity for functional and structural reorganization in the human motor system. However, past research has focused mainly on complex movement sequences over rather short training durations. In this study we investigated changes in corticospinal excitability associated with longer training of elementary, maximum-speed tapping movements. All participating subjects were consistent right-handers and were trained using either the right (experiment 1) or the left thumb (experiment 2). Transcranial magnetic stimulation was applied to obtain motor evoked potentials (MEPs) from the abductor pollicis brevis (APB) muscle of the right and the left hand before and after training. As a result of training, a significant increase was observed in tapping speed accompanied by increased MEPs, recorded from the trained APB muscle, following contralateral M1 stimulation. In the case of subdominant-hand training we additionally demonstrate increased MEP amplitudes evoked at the right APB (untrained hand) in the first training week. Enhanced corticospinal excitability associated with practice of elementary movements may constitute a necessary precursor for inducing plastic changes within the motor system. The involvement of the ipsilateral left M1 likely reflects the predominant role of the left M1 in the general control (modification) of simple motor parameters in right-handed subjects.

Citations

68 citations in Web of Science®
71 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:150 Psychology
610 Medicine & health
Language:English
Date:2006
Deposited On:05 Sep 2011 10:42
Last Modified:16 Aug 2016 10:14
Publisher:Springer
ISSN:0014-4819
Publisher DOI:10.1007/s00221-006-0440-8
PubMed ID:16604315

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations