Header

UZH-Logo

Maintenance Infos

Barest Pixel Composite for agricultural areas using Landsat time series


Diek, Sanne; Fornallaz, Fabio; Schaepman, Michael E; de Jong, Rogier (2017). Barest Pixel Composite for agricultural areas using Landsat time series. Remote Sensing, 9(12):1245.

Abstract

Many soil remote sensing applications rely on narrow-band observations to exploit molecular absorption features. However, broadband sensors are invaluable for soil surveying, agriculture, land management and mineral exploration, amongst others. These sensors provide denser time series compared to high-resolution airborne imaging spectrometers and hold the potential of increasing the observable bare-soil area at the cost of spectral detail. The wealth of data coming along with these applications can be handled using cloud-based processing platforms such as Earth Engine. We present a method for identifying the least-vegetated observation, or so called barest pixel, in a dense time series between January 1985 and March 2017, based on Landsat 5, 7 and 8 observations. We derived a Barest Pixel Composite and Bare Soil Composite for the agricultural area of the Swiss Plateau. We analysed the available data over time and concluded that about five years of Landsat data were needed for a full-coverage composite (90% of the maximum bare soil area). Using the Swiss harmonised soil data, we derived soil properties (sand, silt, clay, and soil organic matter percentages) and discuss the contribution of these soil property maps to existing conventional and digital soil maps. Both products demonstrate the substantial potential of Landsat time series for digital soil mapping, as well as for land management applications and policy making.

Abstract

Many soil remote sensing applications rely on narrow-band observations to exploit molecular absorption features. However, broadband sensors are invaluable for soil surveying, agriculture, land management and mineral exploration, amongst others. These sensors provide denser time series compared to high-resolution airborne imaging spectrometers and hold the potential of increasing the observable bare-soil area at the cost of spectral detail. The wealth of data coming along with these applications can be handled using cloud-based processing platforms such as Earth Engine. We present a method for identifying the least-vegetated observation, or so called barest pixel, in a dense time series between January 1985 and March 2017, based on Landsat 5, 7 and 8 observations. We derived a Barest Pixel Composite and Bare Soil Composite for the agricultural area of the Swiss Plateau. We analysed the available data over time and concluded that about five years of Landsat data were needed for a full-coverage composite (90% of the maximum bare soil area). Using the Swiss harmonised soil data, we derived soil properties (sand, silt, clay, and soil organic matter percentages) and discuss the contribution of these soil property maps to existing conventional and digital soil maps. Both products demonstrate the substantial potential of Landsat time series for digital soil mapping, as well as for land management applications and policy making.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
3 citations in Scopus®
1 citation in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 12 Dec 2017
10 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2017
Deposited On:12 Dec 2017 16:22
Last Modified:28 Apr 2018 07:04
Publisher:MDPI Publishing
ISSN:2072-4292
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3390/rs9121245

Download

Download PDF  'Barest Pixel Composite for agricultural areas using Landsat time series'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 16MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)