Header

UZH-Logo

Maintenance Infos

Mechanical force induces mitochondrial fission


Abstract

Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, continually transported and reshaped. Intriguingly, organelles avoid clashing and entangling with each other in such limited space. Mitochondria form extensive networks constantly remodeled by fission and fusion. Here, we show that mitochondrial fission is triggered by mechanical forces. Mechano-stimulation of mitochondria - via encounter with motile intracellular pathogens, via external pressure applied by an atomic force microscope, or via cell migration across uneven microsurfaces - results in the recruitment of the mitochondrial fission machinery, and subsequent division. We propose that MFF, owing to affinity for narrow mitochondria, acts as a membrane-bound force sensor to recruit the fission machinery to mechanically strained sites. Thus, mitochondria adapt to the environment by sensing and responding to biomechanical cues. Our findings that mechanical triggers can be coupled to biochemical responses in membrane dynamics may explain how organelles orderly cohabit in the crowded cytoplasm.

Abstract

Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, continually transported and reshaped. Intriguingly, organelles avoid clashing and entangling with each other in such limited space. Mitochondria form extensive networks constantly remodeled by fission and fusion. Here, we show that mitochondrial fission is triggered by mechanical forces. Mechano-stimulation of mitochondria - via encounter with motile intracellular pathogens, via external pressure applied by an atomic force microscope, or via cell migration across uneven microsurfaces - results in the recruitment of the mitochondrial fission machinery, and subsequent division. We propose that MFF, owing to affinity for narrow mitochondria, acts as a membrane-bound force sensor to recruit the fission machinery to mechanically strained sites. Thus, mitochondria adapt to the environment by sensing and responding to biomechanical cues. Our findings that mechanical triggers can be coupled to biochemical responses in membrane dynamics may explain how organelles orderly cohabit in the crowded cytoplasm.

Statistics

Citations

Dimensions.ai Metrics
5 citations in Web of Science®
2 citations in Scopus®
3 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

5 downloads since deposited on 22 Feb 2018
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:9 November 2017
Deposited On:22 Feb 2018 13:56
Last Modified:19 Aug 2018 14:22
Publisher:eLife Sciences Publications Ltd.
ISSN:2050-084X
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.7554/eLife.30292
PubMed ID:29119945
Project Information:
  • : FunderSNSF
  • : Grant IDPP00P3_133651
  • : Project TitleMolecular basis of interorganelle communication

Download

Download PDF  'Mechanical force induces mitochondrial fission'.
Preview
Content: Published Version
Filetype: PDF
Size: 6MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)