Header

UZH-Logo

Maintenance Infos

Repeatability Assessment of Intravascular Polarimetry in Patients


Abstract

Intravascular polarimetry with polarization sensitive optical frequency domain imaging (PS-OFDI) measures polarization properties of the vessel wall and offers characterization of coronary atherosclerotic lesions beyond the cross-sectional image of arterial microstructure available to conventional OFDI. A previous study of intravascular polarimetry in cadaveric human coronary arteries found that tissue birefringence and depolarization provide valuable insight into key features of atherosclerotic plaques. In addition to various tissue components, catheter and sample motion can also influence the polarization of near infrared light as used by PS-OFDI. This paper aimed to evaluate the robustness and repeatability of imaging tissue birefringence and depolarization in a clinical setting. 30 patients scheduled for percutaneous coronary intervention at the Erasmus Medical Center underwent repeated PS-OFDI pullback imaging, using commercial imaging catheters in combination with a custom-built PS-OFDI console. We identified 274 matching cross sections among the repeat pullbacks to evaluate the reproducibility of the conventional backscatter intensity, the birefringence, and the depolarization signals at each spatial location across the vessel wall. Bland-Altman analysis revealed best agreement for the birefringence measurements, followed by backscatter intensity, and depolarization, when limiting the analysis to areas of meaningful birefringence. Pearson correlation analysis confirmed highest correlation for birefringence (0.86), preceding backscatter intensity (0.83), and depolarization (0.78). Our results demonstrate that intravascular polarimetry generates robust maps of tissue birefringence and depolarization in a clinical setting. This outcome motivates the use of intravascular polarimetry for future clinical studies that investigate polarization properties of arterial atherosclerosis.

Abstract

Intravascular polarimetry with polarization sensitive optical frequency domain imaging (PS-OFDI) measures polarization properties of the vessel wall and offers characterization of coronary atherosclerotic lesions beyond the cross-sectional image of arterial microstructure available to conventional OFDI. A previous study of intravascular polarimetry in cadaveric human coronary arteries found that tissue birefringence and depolarization provide valuable insight into key features of atherosclerotic plaques. In addition to various tissue components, catheter and sample motion can also influence the polarization of near infrared light as used by PS-OFDI. This paper aimed to evaluate the robustness and repeatability of imaging tissue birefringence and depolarization in a clinical setting. 30 patients scheduled for percutaneous coronary intervention at the Erasmus Medical Center underwent repeated PS-OFDI pullback imaging, using commercial imaging catheters in combination with a custom-built PS-OFDI console. We identified 274 matching cross sections among the repeat pullbacks to evaluate the reproducibility of the conventional backscatter intensity, the birefringence, and the depolarization signals at each spatial location across the vessel wall. Bland-Altman analysis revealed best agreement for the birefringence measurements, followed by backscatter intensity, and depolarization, when limiting the analysis to areas of meaningful birefringence. Pearson correlation analysis confirmed highest correlation for birefringence (0.86), preceding backscatter intensity (0.83), and depolarization (0.78). Our results demonstrate that intravascular polarimetry generates robust maps of tissue birefringence and depolarization in a clinical setting. This outcome motivates the use of intravascular polarimetry for future clinical studies that investigate polarization properties of arterial atherosclerosis.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiovascular Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:July 2018
Deposited On:22 Feb 2019 09:40
Last Modified:22 Feb 2019 09:52
Publisher:Institute of Electrical and Electronics Engineers
ISSN:0278-0062
OA Status:Closed
Publisher DOI:https://doi.org/10.1109/TMI.2018.2815979
PubMed ID:29969412

Download

Full text not available from this repository.
View at publisher

Get full-text in a library