Abstract
Knowledge graphs (KGs) are at the core of numerous applications and their importance is increasing. Yet, knowledge evolves and so do KGs. PubMed, a search engine that primarily provides access to medical publications, adds an estimated 500'000 new records per year - each having the potential to require updates to a medical KG, like the National Cancer Institute Thesaurus. Depending on the applications that use such a medical KG, some of these updates have possibly wide-ranging impact, while others have only local effects. Estimating the impact of a change ex-ante is highly important, as it might make KG-engineers aware of the consequences of their actions during editing or may be used to highlight the importance of a new fragment of knowledge to be added to the KG for some application. This research description proposes a unified methodology for predicting the impact of changes in evolving KGs and introduces an evaluation framework to assess the quality of these predictions.