Header

UZH-Logo

Maintenance Infos

Network-based analysis using chromosomal microdeletion syndromes as a model


Corrêa, Thiago; Feltes, Bruno César; Schinzel, Albert; Riegel, Mariluce; Riegel, Mariluce (2021). Network-based analysis using chromosomal microdeletion syndromes as a model. American Journal of Medical Genetics. Part C: Seminars in Medical Genetics, 187(3):337-348.

Abstract

Microdeletion syndromes (MSs) are a heterogeneous group of genetic diseases that can virtually affect all functions and organs in humans. Although systems biology approaches integrating multiomics and database information into biological networks have expanded our knowledge of genetic disorders, cytogenomic network-based analysis has rarely been applied to study MSs. In this study, we analyzed data of 28 MSs, using network-based approaches, to investigate the associations between the critical chromosome regions and the respective underlying biological network systems. We identified MSs-associated proteins that were organized in a network of linked modules within the human interactome. Certain MSs formed highly interlinked self-contained disease modules. Furthermore, we observed disease modules involving proteins from other disease groups in the MSs interactome. Moreover, analysis of integrated data from 564 genes located in known chromosomal critical regions, including those contributing to topological parameters, shared pathways, and gene-disease associations, indicated that complex biological systems and cellular networks may underlie many genotype to phenotype associations in MSs. In conclusion, we used a network-based analysis to provide resources that may contribute to better understanding of the molecular pathways involved in MSs.

Abstract

Microdeletion syndromes (MSs) are a heterogeneous group of genetic diseases that can virtually affect all functions and organs in humans. Although systems biology approaches integrating multiomics and database information into biological networks have expanded our knowledge of genetic disorders, cytogenomic network-based analysis has rarely been applied to study MSs. In this study, we analyzed data of 28 MSs, using network-based approaches, to investigate the associations between the critical chromosome regions and the respective underlying biological network systems. We identified MSs-associated proteins that were organized in a network of linked modules within the human interactome. Certain MSs formed highly interlinked self-contained disease modules. Furthermore, we observed disease modules involving proteins from other disease groups in the MSs interactome. Moreover, analysis of integrated data from 564 genes located in known chromosomal critical regions, including those contributing to topological parameters, shared pathways, and gene-disease associations, indicated that complex biological systems and cellular networks may underlie many genotype to phenotype associations in MSs. In conclusion, we used a network-based analysis to provide resources that may contribute to better understanding of the molecular pathways involved in MSs.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 23 Jun 2021
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Genetics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Genetics
Health Sciences > Genetics (clinical)
Language:English
Date:1 September 2021
Deposited On:23 Jun 2021 16:24
Last Modified:25 Apr 2024 01:37
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1552-4868
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/ajmg.c.31900
PubMed ID:33754460