Header

UZH-Logo

Maintenance Infos

Poisson process approximations for the Ewens sampling formula


Arratia, R; Barbour, A D; Tavaré, S (1992). Poisson process approximations for the Ewens sampling formula. Annals of Applied Probability, 2(3):519-535.

Abstract

The Ewens sampling formula is a family of measures on permutations, that arises in population genetics, Bayesian statistics and many other applications. This family is indexed by a parameter $\theta > 0$; the usual uniform measure is included as the special case $\theta = 1$. Under the Ewens sampling formula with parameter $\theta$, the process of cycle counts $(C_1(n), C_2(n), \ldots, C_n(n), 0, 0, \ldots)$ converges to a Poisson process $(Z_1, Z_2, \ldots)$ with independent coordinates and $\mathbb{E}Z_j = \theta/j$. Exploiting a particular coupling, we give simple explicit upper bounds for the Wasserstein and total variation distances between the laws of $(C_1(n), \ldots, C_b(n))$ and $(Z_1, \ldots, Z_b)$. This Poisson approximation can be used to give simple proofs of limit theorems with bounds for a wide variety of functionals of such random permutations.

Abstract

The Ewens sampling formula is a family of measures on permutations, that arises in population genetics, Bayesian statistics and many other applications. This family is indexed by a parameter $\theta > 0$; the usual uniform measure is included as the special case $\theta = 1$. Under the Ewens sampling formula with parameter $\theta$, the process of cycle counts $(C_1(n), C_2(n), \ldots, C_n(n), 0, 0, \ldots)$ converges to a Poisson process $(Z_1, Z_2, \ldots)$ with independent coordinates and $\mathbb{E}Z_j = \theta/j$. Exploiting a particular coupling, we give simple explicit upper bounds for the Wasserstein and total variation distances between the laws of $(C_1(n), \ldots, C_b(n))$ and $(Z_1, \ldots, Z_b)$. This Poisson approximation can be used to give simple proofs of limit theorems with bounds for a wide variety of functionals of such random permutations.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

56 downloads since deposited on 12 Apr 2010
20 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Uncontrolled Keywords:Total variation, population genetics, permutations
Language:English
Date:1992
Deposited On:12 Apr 2010 12:30
Last Modified:24 Sep 2019 16:19
Publisher:Institute of Mathematical Statistics
ISSN:1050-5164
OA Status:Green
Publisher DOI:https://doi.org/10.1214/aoap/1177005647

Download

Green Open Access

Download PDF  'Poisson process approximations for the Ewens sampling formula'.
Preview
Filetype: PDF
Size: 2MB
View at publisher